DOI QR코드

DOI QR Code

The Effects of Mass-size Relationship for Snow on the Simulated Surface Precipitation

눈송이의 크기와 질량 관계가 지표 강수 모의에 미치는 영향

  • Lim, Kyo-Sun Sunny (Department of Astronomy and Atmospheric Sciences, School of Earth System Sciences, Kyungpook National University)
  • 임교선 (경북대학교 지구시스템과학부 천문대기과학전공)
  • Received : 2020.01.17
  • Accepted : 2020.02.03
  • Published : 2020.02.29

Abstract

This study presented the effects of the assumed mass-size relationship for snow on the simulated surface precipitation by using cloud microphysics parameterizations in Weather Research and Forecasting (WRF) model. The selected cloud microphysics parameterizations are WRF Double-Moment 6-class (WDM6) and WRF Single-Moment 6-class (WSM6) in the WRF model. We replaced the mass-size relationship for snow in WDM6 and WSM6 with Thompson's mass-size relationship retrieved from measurement data. The sensitivity of the modified WDM6 and WSM6 was tested for the idealized 2-dimensional squall line and winter precipitation system over the Korean peninsula, respectively. The modified WDM6 and WSM6 resulted in the increase of graupel/rain mixing ratios and the decrease of snow mixing ratio in the low atmosphere. The changes of hydrometeor mixing ratio and surface precipitation could be due to the collision-coalescence process between raindrops and snow and the graupel melting process.

본 논문은 기상 모델의 미세구름물리 모수화 과정 내의 눈송이의 질량-크기 관계가 지표 강수 모의에 미치는 영향에 대해 연구에 관한 것이다. WDM6와 WSM6 미세구름물리 모수화 방안이 연구를 위해 사용되었다. 실제 관측된 자료를 바탕으로 산출된 Thompson의 눈송이의 질량-크기 관계를 도입하여 WDM6와 WSM6 내의 눈송이의 질량-크기 관계식을 대체하였다. 이상적인 스콜선과 한반도 겨울철 강수 사례에 대해 수정된 WDM6와 WSM6를 사용하여 민감도 실험을 실시하였다. 결과적으로, 대기 하층에서는 싸락눈과 빗방울의 혼합비가 증가하였고 눈송이의 혼합비는 감소하였다. 이러한 혼합비와 지표 강수의 변화는 빗방울과 눈송이의 충돌 및 병합 과정과 싸락눈의 융해 과정에 기인한 것으로 분석되었다.

Keywords

References

  1. Byun, U.-Y., Hong, J., Hong, S.-Y., and Shin, H. H., 2015, Numerical simulations of heavy rainfall over central Korea on 21 September 2010 using the WRF model. Advances in Atmospheric Science, 32(6), 855-869. https://doi.org/10.1007/s00376-014-4075-6
  2. Chen, F., and Dudhia, J., 2001, Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  3. Dee, D.P., and Coauthors, 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553-597. https://doi.org/10.1002/qj.828
  4. Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. J. 2005, Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quarterly Journal of the Royal Meteorological Society, 131, 1997-2017. https://doi.org/10.1256/qj.04.134
  5. Fovell, R. G., Mullendore, G. L., and Kim, S.-H., 2006, Discrete propagation in numerically simulated nocturnal squall lines. Monthly Weather Review, 134, 3735-3752. https://doi.org/10.1175/MWR3268.1
  6. Hagos, S., Feng, Z., Burleyson C., Lim, K.-S. S., Long, C. L., Wu, D., and Thompson, G., 2014, Evaluation of high resolution simulations of cloud populations associated with Madden-Julian Oscillation using data collected during AMIE/DYNAMO field campaign. Journal of Geophysical Research, 119, 12,052-12,068. https://doi.org/10.1002/2014jd022143
  7. Hong, S.-Y., Lim, K.-S. S., Kim, J.-H., Lim, J.-O. J., and Dudhia, J., 2009, Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. Journal of Applied Meteorology and Climatology, 48, 61-76. https://doi.org/10.1175/2008JAMC1960.1
  8. Hong, S.-Y., and Lim, J.-O. J., 2006, The WRF singlemoment 6-class microphysics scheme (WSM6). Journal of Korean Meteorological Society, 42, 129-151.
  9. Hong, S.-Y., Noh, Y., and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  10. Hong, S.-Y., Dudhia, J., and Chen, S.-H., 2004, A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  11. Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008, Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, D13103. https://doi.org/10.1029/2008JD009944
  12. Kain, J. S., 2004, The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  13. Kain, J. S., and Fritsch, J. M., 1990, A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of Atmospheric Science, 47, 2784-2802. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
  14. Lee, G., and Kim, K., 2019, International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). AGU fall meeting, San Francisco, CA, USA, Moscone center.
  15. Lei, H., Guo, J., and Chen, D., 2020, Systematic bias in the prediction of warm-rain hydrometeors in the WDM6 microphysics scheme and modifications. Journal of Geophysical Research, in press.
  16. Lim, K.-S. S., 2019, Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29(2), 1-13.
  17. Lim, K.-S. S., Chang, E.-C., and Sun, R., 2019, Evaluation of cloud microphysics parameterizations during the ICEPOP field campaign in Korea. AGU fall meeting, San Francisco, CA, USA, Moscone center.
  18. Lim, K.-S. S., Hong, S.-Y., Yoon, J.-H., and Han, J., 2014, Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions. Weather and Forecasting, 29, 1143-1154. https://doi.org/10.1175/WAF-D-13-00143.1
  19. Lim, K.-S. S., and Hong, S.-Y., 2012, Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea. Meteorology and Atmospheric Physics, 118, 199-214. https://doi.org/10.1007/s00703-012-0216-6
  20. Lim, K.-S. S., and Hong, S.-Y., 2010, Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Monthly Weather Review, 138, 1587-1612. https://doi.org/10.1175/2009MWR2968.1
  21. McMillen, J. D., and Steenburgh, W. J., 2015, Impact of microphysics parameterizations on simulations of the 27 October 2010 Great Salt Lake-effect snowstorm. Weather and Forecasting, 30, 136-152. https://doi.org/10.1175/WAF-D-14-00060.1
  22. Milbrandt, J. A., and Yau, M. K., 2005, A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. Journal of Atmospheric Science, 62, 3051-3064. https://doi.org/10.1175/JAS3534.1
  23. Morcrette, J. J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus, R., 2008, Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Monthly Weather Review, 136, 4773-4798. https://doi.org/10.1175/2008MWR2363.1
  24. Morrison, H., Thompson, G., and Tatarskii, V., 2009, Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Monthly Weather Review, 137, 991-1007. https://doi.org/10.1175/2008MWR2556.1
  25. Morrison, H., Curry, J. A., and Khvorostyanov, V. I., 2005, A new double-moment microphysics parameterization for application in cloud and climate models. Part I:Description. Journal of Atmospheric Science, 62, 1665-1677. https://doi.org/10.1175/JAS3446.1
  26. Notaros, B. M., and Coauthors, 2016, Accurate characterization of winter precipitation using multi-angle snowflake camera, visual hull, advanced scattering methods and polarimetric radar. Atmosphere, 7(6), 81. https://doi.org/10.3390/atmos7060081
  27. Skamarock, W. C., and Coauthors, 2008, A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-4751STR, 113 pp.
  28. Stanford, M., Morrison, H., Varble, A., Berner, J., Wu, W., McFarquhar, G., and Milbrandt, J., 2019, Sensitivity of simulated deep convection to a stochastic ice microphysics framework. Journal of Advances in Modeling Earth Systems, 11, 3362-3389. https://doi.org/10.1029/2019MS001730
  29. Song, H.-J., and Sohn, B. J., 2018, An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 54, 1-12. https://doi.org/10.1007/s13143-017-0049-9
  30. Tapiador, F. J., Sánchez, J. L., and Garcia-Ortega, E., 2019, Empirical values and assumptions in the microphysics of numerical models. Atmospheric Research, 215, 214-238. https://doi.org/10.1016/j.atmosres.2018.09.010
  31. Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D., 2008, Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Imple- mentation of a new snow parameterization. Monthly Weather Review, 136, 5095-5115. https://doi.org/10.1175/2008MWR2387.1
  32. Yang, Q., Dai, Q., Han, D., Chen, Y., Zhang, S., 2019, Sensitivity analysis of raindrop size distribution parameterizations in WRF rainfall simulation. Atmospheric Research, 228, 1-13. https://doi.org/10.1016/j.atmosres.2019.05.019