
J. Korean Math. Soc. 57 (2020), No. 2, pp. 415–427

https://doi.org/10.4134/JKMS.j190098

pISSN: 0304-9914 / eISSN: 2234-3008

A NOTE ON THE EXISTENCE OF HORIZONTAL

ENVELOPES IN THE 3D-HEISENBERG GROUP

Yen-Chang Huang

Abstract. By using the support functions on the xy-plane, we show

the necessary and sufficient conditions for the existence of envelopes of
horizontal lines in the 3D-Heisenberg group. A method to construct hor-

izontal envelopes from the given ones is also derived, and we classify the
solutions satisfying the construction.

1. Introduction

Given a family of lines in R2, the envelope of the family of lines F (λ, x, y),
depending on the parameter λ, is defined to be a curve which every line in the
family contacts exactly at one point. A simple example of finding the envelope
of the family of lines F (λ, x, y) = (1 − λ)x + λy − λ(1 − λ) = 0 for λ ∈ [0, 1]
and (x, y) ∈ [0, 1] × [0, 1] can be illustrated as follows: consider the system of
differential equations {

F (λ, x, y) = 0,
∂F (λ,x,y)

∂λ = 0.
(1)

The second equation helps us find λ in terms of x, y, and substitute λ into the
first equation to have the envelope

x2 + y2 − 2xy − 2x− 2y + 1 = 0.(2)

Note that there are in total three variables λ, x, y, two equations in the system
of differential equations (1), and hence one gets the solution (2) which is a one-
dimensional curve in R2. Some classical results of the envelope theory has been
systematically studied by V. I. Arnold [1, Chapter 9] and Thom [26], and the
references therein. In particular, in [2–4] Arnold et al. also develop the theory
of Lagrangian and Legendrian mappings by studying the singularities of wave
fronts and caustics. See also [27] by Zakalyukin. In [7] Capitanio studies the
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union of the Legendrian lifts of the family curves in the projectivized cotangent
bundle of the plane (called Legendrian graph) and constructs a Legendrian
version of tangential family theory. For the studies of 1-parameter family of
surfaces in R3, we refer the readers to Kock [18] and Izumiya [17].

The applications of the envelope theory have even attracted a great atten-
tion to the other scientific fields. For instance, in Economics the Envelope
Theorem shows that the optimal production functions of objects can be ob-
tained by the given input and output prices of the objects [10, 21]. Recently
the theorem has also been generalized to the functions of multivariables with
non-differentiability condition [14]. The other application in Computational
Geometry related to the existence of envelops is the complexity of the upper
envelopes of n line segments in a given time period [5, 11,16].

In general, seeking the explicit expression of envelope of a family of lines
without any constraints is impossible in the higher dimensional Euclidean
spaces Rn for n ≥ 3. The reason is that in the higher dimensional spaces,
the systems of differential equations similar to (1) are usually over-determined
[12, Sec. 26, Chapter 2]. However, it is possible to consider the existence of
a kind of envelopes (called horizontal envelopes, see Definition 1 later) in the
3-dimensional Heisenberg group H1. There are a few equivalent ways to intro-
duce the Heisenberg group (for instance, the authors [6] show four equivalent
definitions), and in this note, as the by-product of our previous studies, we
take the definition same as in [8, 9]. The Heisenberg group (H1, J, ξ) is the
3-dimensional space R3 with the almost complex structure J and the hori-
zontal distribution ξ defined by ξ = kerα, where α = dz + xdy − ydz is the
standard contact 1-form (more detail about H1 will be introduced in the later
paragraphs). A horizontal curve in H1 is a regular curve with tangent vectors
on the horizontal distribution ξ. The geodesics in H1 are the horizontal lines
and helices (both are Legendre curves, see [23, Sec. 3] and references therein).
It is natural to propose the following question:

Question. What conditions for given a family of horizontal lines in H1 ensure
the existence of a curve such that its tangents are all lines in the family?

Such a curve is called a horizontal envelope for given horizontal lines (see
Definition 1), and in this note we will study the necessary and sufficient con-
ditions for the existence of horizontal envelopes in H1. To the best of our
knowledge, there is no literature regarding the horizontal envelope except for
the different approach taken by Li-Pei-Takahashi-Yu [19,25] in 2018 shows that
the existence and uniqueness theorems for one-parameter families of spherical
Legendre curves by using the curvatures defined on the unit spherical bundle.
Some similar topics

We recall some terminologies for our purpose. For more details about the
Heisenberg groups, we refer the readers to [8, 9, 20, 22, 23]. The 3-dimensional
Heisenberg group H1 is the Lie group (R3, ?), where the group operation ? is
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defined, for any point (x, y, z), (x′, y′, z′) ∈ R3, by

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ + yx′ − xy′).

For p ∈ H1, the left translation by p is the diffeomorphism Lp(q) := p ? q.
A basis of left invariant vector fields (i.e., invariant by any left translation) is
given by

e̊1(p) :=
∂

∂x
+ y

∂

∂z
, e̊2(p) :=

∂

∂y
− x ∂

∂z
, T (p) := (0, 0, 1).

The horizontal distribution (or contact plane ξp at any point p ∈ H1) is the
smooth plane distribution generated by e̊1(p) and e̊2(p). We shall consider on
H1 the (left invariant) Riemannian metric g := 〈·, ·〉 so that {̊e1, e̊2, T} is an
orthonormal basis in the Lie algebra of H1. The endomorphism J : H1 → H1

is defined such that J (̊e1) = e̊2, J (̊e2) = −e̊1, J(T ) = 0 and J2 = −1.
A curve γ : I ⊂ R → H1 is called horizontal (or Legendrian) if its tangent

at any point on the curve is on the contact plane. More precisely, if we write
the curve in coordinates γ := (x, y, z) with the tangent vector γ′ = (x′, y′, z′) =
x′̊e1(γ) + y ′̊e2(γ) +T (z′− x′y+ xy′), then the curve γ is horizontal if and only
if

z′ − x′y + xy′ = 0,(3)

where the prime ′ denotes the derivative with respect to the parameter of the
curve. The velocity γ′ has the natural decomposition

γ′ = γ′ξ + γ′T ,

where γ′ξ (resp. γ′T ) is the orthogonal projection of γ′ on ξ along T (resp. on T

along ξ) with respect to the metric g. Recall that a horizontally regular curve
is a parametrized curve γ(u) such that γ′ξ(u) 6= 0 for all u ∈ I (Definition 1.1

[9]). Also, in Proposition 4.1 [9], we show that any horizontally regular curve
can be uniquely reparametrized by horizontal arc-length s, up to a constant,
such that |γ′ξ(s)| = 1 for all s, and called the curve being with horizontal
unit-speed. Moreover, two geometric quantities for horizontally regular curves
parametrized by horizontal arc-length, the p-curvature k(s) and the contact
normality τ(s), are defined by

k(s) := 〈dγ
′(s)

ds
, Jγ′(s)〉,

τ(s) := 〈γ′(s), T 〉,

which are invariant under pseudo-hermitian transformations of horizontally
regular curves [9, Section 4]. Note that k(s) is analogous to the curvature of
the curve in the Euclidean space R3, while τ(s) measures how far the curve
is from being horizontal. When the curve γ(u) is parametrized by arbitrary
parameter u (not necessarily the horizontal arc-length s), the p-curvature is
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given by

k(u) :=
x′y′′ − x′′y′

((x′)2 + (y′)2)
3/2

(u).(4)

It is clear that a curve γ(s) is horizontal if and only if γ′(s) = γ′ξ(s) for all
s. One of the examples for horizonal curves is the horizontal lines which can
be characterized by the following proposition.

Proposition 1.1. Any horizontal line ` in H1 can be uniquely determined by
three parameters (p, θ, t) for any p ≥ 0, θ ∈ [0, 2π], t ∈ R. Any point on the
line can be represented in coordinates

` :

 x = p cos θ − s sin θ,
y = p sin θ + s cos θ,
z = t− sp,

(5)

for all s ∈ R.

When s = 0, denote by

Q′ := (x, y, z) = (p cos θ, p sin θ, t).(6)

Observe that ` is an oriented line through the point Q′ with the directional
vector − sin θ e̊(Q′) + cos θ e̊(Q′). The value p actually is the value of the
support function p(θ) for the projection π(`) of ` on the xy-plane (see the
proof of Proposition 1.1 in next section).

Inspired by the envelopes in the plane, with the assistance of contact planes
in H1 we introduce the horizontal envelopes tangent to a family of horizontal
lines.

Definition. Given a family of horizontal lines in H1, a horizontal envelope is
a horizontal curve γ such that γ contacts with exactly one line in the family at
one point.

Back to Proposition 1.1, p actually is the distance of the projection π(`) of
` onto the xy-plane to the origin, and θ is the angle from the x-axis to the
line perpendicular to the projection (see Fig. 3 next section). To obtain the
horizontal envelope γ, it is natural to consider p as a function of θ, namely, the
support function p = p(θ) for the projection π(γ) of the curve on the xy-plane.
Moreover, by (6) we know that the value t dominates the height of the point
Q′. As long as θ is fixed, the projection of Q′ onto the xy-plane is fixed. Thus,
we may consider t as a function of θ. Under these circumstances, the family of
horizontal lines is only controlled by one parameter θ, and so the following is
our main theorem.

Theorem 1.2. Let p = p(θ) ≥ 0 and t = t(θ) be C1-functions defined on
θ ∈ [0, 2π] satisfying

t′ = (p′)2 − p2.(7)
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There exists a horizontally regular curve γ parametrized by horizontal arc-length
such that the curve is the horizontal envelope of the family of horizontal lines
determined by θ (and hence p and t). In coordinates, the envelope γ = (x, y, z)
can be represented by

γ :

 x(θ) = p(θ) cos θ − p′(θ) sin θ,
y(θ) = p(θ) sin θ + p′(θ) cos θ,
z(θ) = t(θ)− p′(θ)p(θ).

(8)

Moreover, if p is a C2-function, the p-curvature and the contact normality of
γ are given by k = 1

p+p′′ and τ ≡ 0.

Since the functions p(θ) and t(θ) uniquely determine a family of horizontal
lines by Proposition 1.1, we say that the horizontal envelope γ in Theorem 1.2
is generated by the family of horizontal lines (p(θ), θ, t(θ)).

Remark 1.3. A geodesic in H1 is a horizontally regular curve with minimal
length with respect to the Carnot-Carathéodory distance. For two given points
in H1 one can find, by Chow’s connectivity Theorem ([15, p. 95]), a horizontal
curve joining these points. Note that when p ≡ c, a constant function, by (5),
(7), and (8), the horizontal envelope γ generated by the family of horizontal
lines {(c, θ, t(θ)), θ ∈ [0, 2π]} is a (helix) geodesic with radius c; the same result
occurs if t is also a constant function. In particular, when p ≡ 0, the horizontal
envelope is the line parallel to the xy-plane and through the z-axis.

Example 1.4. Let p(θ) = sin θ cos θ and t(θ) = 3θ
8 + 5

32 sin(4θ), θ ∈ [0, 2π]. The
horizontal envelope γ(s) generated by p(θ) and t(θ) from different viewpoints
in H1 are shown in Fig. 1. The dashed curve is the projection of γ onto the
xy-plane.

We also point out that the construction of horizontal envelopes introduced
in Theorem 1.2 can be achieved by the concept of the space of contact elements
in contact topology. First, the contact form α = dz + xdy − ydz used in the
paper and α1 = dz + xdy are contactomorphic via the diffeomorphism

f : (H1, kerα)→ (H1, kerα1)

(x, y, z) 7→ (2x, y, z − xy)

and both contact structures are diffeomorphic to kerα2, where α2 = dz − ydx
(see Example 2.1.3 in [13] for more detail). Recall that a contact element for
a smooth n-dimensional manifold B is a hyperplane in a tangent space to B.
The space of contact elements of B is the collection

B = {(b, V ) | b ∈ B and contact element V ∈ TbB}.
By identifying the space B with the projective cotangent bundle PT ∗B of di-
mension 2n− 1, B forms a contact manifold with a natural contact structure,
but without a globally defined contact form (see [13, page 6]). In particular,
when B = R2 and identify the real projective space RP 1 with R/2πZ with
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Figure 1. The horizontal envelope shown in Example 1 with
the projections to the specific planes.

coordinate θ, we have the contact manifold B ∼= PT ∗B ∼= R2 × S1 with the

natural contact structure ker
(

sin(θ)dx− cos(θ)dy
)

. Thus, the restriction

{(b, `) | b ∈ R2, oriented non-vertical lines ` ∈ TbR2} ⊂ R2 × S1

and (H1, kerα2) are isomorphic via the map g(x, y, θ) = (x, tan θ, y).
If γ(t) = (x(t), y(t)) is a (regular) plane curve parametrized by arc-length,

then we can find θ(t) such that the tangent vector equals (x′(t), y′(t)) =
(cos θ(t), sin θ(t)). Thus, γ̃(t) = (x(t), y(t), θ(t)) in R2 × S1 is the horizontal
lift of γ. To complete the construction of horizontal envelopes, now one can
note the following. Suppose Lt is a family of lines in R2 and E is the corre-
sponding envelope of Lt. One lifts the family Lt (E resp.) to the horizontal

lines L̃t (horizontal lift Ẽ resp.) in R2×S1 and one sees that Ẽ is the horizontal

envelope of L̃t. The condition (7) can be reproduced by using the composition
of the functions f, g mentioned above and we leave the derivation to the reader.

Our second theorem shows that the converse statement of Theorem 1.2 also
holds for horizontal curves with “jumping” ends. The key observation for the
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proof is that the tangent lines of a horizontal curve are all horizontal lines and
they can be represented by parameters (p, θ, t) by Proposition 1.1.

Theorem 1.5. Let γ : θ ∈ [0, 2π] 7→ (x(θ), y(θ), z(θ)) ∈ H1 be a horizonal curve
with finite length. Suppose x(0) = x(2π), y(0) = y(2π), and z(0) 6= z(2π).
Then the set of its tangent lines is uniquely determined by p = p(θ) ≥ 0 and
t = t(θ) satisfying (7).

We introduce a method to construct horizontal envelopes from the given
ones.

Corollary 1.6. Let pi = pi(θ) ≥ 0, ti = ti(θ) be C1-functions defined on [0, 2π]
satisfying (7) for i = 1, 2. Suppose γi = (xi, yi, zi) is a horizontal envelope
generated by the family of horizontal lines (pi, θ, ti) for i = 1, 2. Denote by
p = p1 + p2 and t = t1 + t2. The curve γ = (x, y, z) is a horizontal envelope
generated by a family of horizontal lines (p(θ), θ, t(θ)) if and only if

p1p2 = p′1p
′
2.(9)

By Corollary 1.6 and Remark 1.3, we know that if at least one of γ1 or γ2 is
a (helix) geodesic with nonzero radius, γ can not be a horizontal envelope.

Now we seek the classification of functions p1, p2 satisfying the condition
p1p2 = p′1p

′
2 in Corollary 1.6. Actually, for any subinterval [a, b] ⊂ [0, 2π] such

that pi 6= 0 and p′i 6= 0 for i = 1, 2, the condition (9) is equivalent to that

p1(θ) = p1(a) exp
(∫ θ

a
p2(α)
p′2(α)

dα
)

for any θ ∈ [a, b]. In addition, if pi(θi) = 0 for

some θi ∈ [0, 2π], we may move the horizontal envelope γ by a left translation
such that pi > 0 in [0, 2π]. Without loss of generality we may assume that
pi > 0 on [0, 2π] and obtain the corollary of classification.

Corollary 1.7. Let pi(θ) > 0 (i = 1, 2) be the C2-functions defined on [0, 2π]
satisfying the condition p′1p

′
2 = p1p2. Suppose p′i 6= 0 and p′′i 6= 0 in any

subinterval [a, b] ⊂ [0, 2π]. We have the following results in [a, b] :

(1) If p′1 > 0, p′2 > 0, p′′2 > 0, then p′′1 > 0.
(2) If p′1 < 0, p′2 < 0, p′′2 < 0, then p′′1 > 0.
(3) We do not have to consider the assumptions for p′1 < 0, p′2 < 0, p′′2 > 0

and p′1 > 0, p′2 > 0, p′′2 < 0.

Finally, we emphasis that unlike the differential system (1) mentioned in the
first paragraph, the horizontal envelope in H1, in general, does not have an
analytic expression similar to the one in (2). Indeed, an alternative expression
of a horizontal line can be obtained by the intersection of two planes in H1

F1(x, y, z, θ) : = cos θx+ sin θy − p = 0,(10)

F2(x, y, z, θ) : = −p sin θx+ p cos θy + z − t = 0,(11)

where the set of points such that F1(x, y, z, θ) = 0 is a vertical plane pass-
ing through the line p = x cos θ + y sin θ, and the set of F2(x, y, z, θ) = 0
is the contact plane spanned by e̊1(Q′) and e̊2(Q′) through the point Q′ =
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Figure 2. Alternative expression of horizontal line ` in H1

(p cos θ, p sin θ, t) (see Fig. 2). By taking the derivatives, respectively, of F1

and F2 with respect to θ, we have

∂F1

∂θ
= −x sin θ + y cos θ − p′ = 0,(12)

∂F2

∂θ
= (−p′ sin θ − p cos θ)x+ (p′ cos θ − p sin θ)y − t′ = 0.(13)

Using (10), (12), and substituting p, p′, into (13), the condition ∂F2

∂θ = 0 is
equivalent to (7). Therefore, it may be only for seldom special cases that
one can eliminate the parameter θ in (10), (11), and (12), to find the exact
expression for the horizontal envelope.

Acknowledgements. The author thanks the anonymous reviewers for their
careful reading of the manuscript. In particular, the author also appreciate
their many insightful comments for the alternative construction of the hori-
zontal envelopes from the viewpoint of contact topology with the appropriate
literature reviews.

2. Proofs of theorems and corollaries

In this section we shall give the proofs of Theorems 1.2 and 1.5. First we
prove Proposition 1.1 which plays the essential role in the notes.

Proof of Proposition 1.1. Although the proof has been shown in [9] Proposition
8.2, we describe the proof again for completely understanding the representa-
tions of horizontal lines in H1. Suppose π(`) is the projection of horizontal line
` ∈ H1 onto the xy-plane and the function p = p(θ) is the distance from the
origin to π(`) with angle θ from the positive direction of the x-axis (see Fig.
3).

Let the point Q = (p cos θ, p sin θ, 0) be the intersection of the line through
the origin perpendicular to π(`). We choose the unit directional vector (− sin θ,
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Figure 3. The horizontal line ` in H1

cos θ, 0) along π(`), and so any point (x, y, 0) on π(`) can be parametrized by
horizontal arc-length s {

x = p cos θ − s sin θ,
y = p sin θ + s cos θ.

(14)

Denote the lift of the pointQ on ` byQ′. We may assumeQ′ = (p cos θ, p sin θ, t)
for some t ∈ R. Since ` is horizontal, the tangent line of ` must be on the con-
tact plane ξ. Thus, the parametric equations for ` can be represented by

` : (x, y, z) = (p cos θ, p sin θ, t) + s(Ae̊1(Q′) +Be̊2(Q′))(15)

for some constants A,B to be determined. Expand (15) by using the definitions
of e̊1 and e̊2, and compare the coefficients with (14), one gets A = − sin θ and
B = cos θ. Thus, the parametric equations for ` are obtained as shown in (5).
By (5), the parameters p, θ, and t, uniquely determine the horizontal line `. �

Proposition 2.1. Given any horizontal curve γ(s) = (x(s), y(s), z(s)) parame-
trized by horizontal arc-length s. Suppose the horizontal line ` determined by
(p, θ, t) intersects γ at the unique point M(x, y, z) on the contact plane ξM (see
Fig. 3). If p = p(θ) is a function of θ, then the intersection M(x, y, z) can be
uniquely represented by  x = p cos θ − p′ sin θ,

y = p sin θ + p′ cos θ,
z = t− p′p,

(16)

where p′ denotes the partial derivative of the function p with respect to θ.

Proof. We first solve the projection (x, y, 0) of the intersection M onto the xy-
plane in terms of p and θ, and then the z-component of M . By (14), any point
(x, y) on the projection of ` satisfies

p = x cos θ + y sin θ.(17)
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Since p = p(θ), take the derivative on both sides to get

p′ = −x sin θ + y cos θ.(18)

Use (17) and (18) we obtain the first two components of the intersection M on
the xy-plane, namely,

x = p cos θ − p′ sin θ,
y = p sin θ + p′ cos θ.

To determine the third component of M , z, by using (14), (18), we have
s = y cos θ − x sin θ = p′. Finally, (5) implies that z = t − p′p. The unique
intersection point M immediately implies the uniqueness of the expression (16)
and the result follows. �

Now we prove Theorem 1.2.

Proof of Theorem 1.2. According to the assumptions for the functions p and
t, the curve γ(θ) = (x(θ), y(θ), z(θ)) defined by (8) is well-defined. By [9,
Proposition 4.1], since any horizontally regular curve can be reparametrized by
its horizontal arc-length, it suffices to show that the curve γ(θ) is horizontal.
Indeed, by Proposition 2.1, a straight-forward calculation shows that

z′ − x′y + y′x

=
(
t′ − p′′p− (p′)2

)
− (p′ cos θ − p sin θ − p′′ sin θ − p′ cos θ) (p sin θ + p′ cos θ)

+ (p′ sin θ + p cos θ + p′′ cos θ − p′ sin θ) (p cos θ − p′ sin θ)
= t′ − (p′)2 + p2.

Thus, z′−x′y+y′x = 0 if and only if the functions p and t satisfy (7). Therefore
the curve defined by (8) is horizontal by (3).

To derive the p-curvature for the curve γ, substitute (8) into (4) and the
result follows. It is also clear that τ ≡ 0 since γ is horizontal. �

The horizontal length of the horizontal envelope can be represented by the
function p(θ). Actually, by (8) we have the horizontal length

L(γ) :=

∫ 2π

0

[
(x′(θ))

2
+ (y′(θ))

2
]1/2

dθ =

∫ 2π

0

|p+ p′′|dθ.

Compare the p-curvature k in Theorem 1.2 and the function on the right-hand
side of the integral, we conclude that the length of the horizontal envelope γ is
the integral of the radius of curvature for the projection π(γ)

L(γ) =

∫ 2π

0

1

|k(θ)|
dθ.

Next we show Theorem 1.5.
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Proof of Theorem 1.5. Suppose that the horizontal line ` represented by (p, θ, t)
is tangent to γ at M(x, y, z). Since M ∈ `, by (5), we can solve the point Q′

representing the horizontal line in terms of x, y, z. Let

x = p cos θ − s sin θ,

y = p sin θ + s cos θ,(19)

z = t− sp.

One can solve

s = −x sin θ + y cos θ.(20)

Substitute s into the third equation in (19) to get

t = z + (−x sin θ + y cos θ)p.(21)

The first two equations in (19) imply that

p = x cos θ + y sin θ,(22)

which means that the distance p is a smooth function of θ defined on [0, 2π] if
` intersects γ at exactly one point. Similarly, (21) implies that t is a smooth
function of θ. Finally, use (20), (21), (22) it is easy to check that the horizontal
line `(p, θ, t) satisfies the condition (7) for any θ. �

Proof of Corollary 1.6. By Theorem 1.2, it suffices to show that the identity
t′ = (p′)2 − p2 holds. By assumption we have

t′ − (p′)2 + p2 = t′1 + t′2 − (p′1 + p′2)2 + (p1 + p2)2

= −2p′1p
′
2 + 2p1p2.

Thus, t′ = (p′)2 − p2 if and only if the identity p′1p
′
2 = p1p2 holds. �

Proof of Corollary 1.7. (1) The condition p′1p
′
2 = p1p2 is equivalent to that

p1(θ) = p1(a) exp
(∫ θ

a
p2
p′2
dα
)

. Take the derivative twice we have p′′1(θ) =

p1(a)
(

(p′2)
2−p2p′′2 +(p2)

2

(p′2)
2

)
· exp

(∫ θ
a
p2
p′2
dα
)

. Thus, the sign of p′′1 only depends

on the sign of the numerator

(p′2)2 − p2p′′2 + (p2)2.(23)

We claim that (p′2)2− p2p′′2 > 0 under the assumptions, and so (23) is positive.

Indeed, if p2, p
′
2 > 0, then 0 <

(
log p2

p′2

)′
= (log p2)

′ − (log p′2)
′

=
p′2
p2
− p′′2

p′2
, and

the result follows.
(2) Use the similar method as (1).

(3) If p′2 < 0 and p′′2 > 0, then 0 < (log(−p′2))
′

=
p′′2
p′2

which contradicts

with the assumptions for the signs of p′2 and p′′2 . The similar argument for the
assumptions p′1 > 0, p′2 > 0, p′′2 < 0. �
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Finally we point out that the construction in Corollary 1.6 can not obtain
a closed horizontal envelope γ. Indeed, take the derivative with respect to θ in
(8) and use (7), we have

z′ = t′ − (p′)2 − pp′′ = −p2 − pp′′,
which is equivalent to

z(θ) = −
∫ θ

0

p2(α) + p(α)p′′(α)dα+ z(0) for any θ ∈ [0, 2π].(24)

If the curve is closed, say z(0) = z(2π) and p(0) = p(2π), by using integration
by parts in (24) one gets∫ 2π

0

p2(α)− (p′(α))
2
dα = 0.(25)

However, according to Santaló [24] (equation (1.8) in I.1.2) we know that

F =
1

2

∫ 2π

0

p2(α)− (p′(α))2dα,

where F is the enclosed area of the projection π(γ) of the curve γ on the xy-
plane. Therefore, (25) is equivalent to that γ must be a vertical line segment
which contradicts with closeness of the curve.
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