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ORBIT EQUIVALENCE ON SELF-SIMILAR GROUPS AND

THEIR C∗-ALGEBRAS

Inhyeop Yi

Abstract. Following Matsumoto’s definition of continuous orbit equiv-

alence for one-sided subshifts of finite type, we introduce the notion of
orbit equivalence to canonically associated dynamical systems, called the

limit dynamical systems, of self-similar groups. We show that the limit
dynamical systems of two self-similar groups are orbit equivalent if and

only if their associated Deaconu groupoids are isomorphic as topological

groupoids. We also show that the equivalence class of Cuntz-Pimsner
groupoids and the stably isomorphism class of Cuntz-Pimsner algebras of

self-similar groups are invariants for orbit equivalence of limit dynamical

systems.

1. Introduction

Interdisciplinary study between orbit equivalence of topological dynamics
and C∗-algebras has a long and fruitful history. One of the most important
and initiating results of this area is the classification of Cantor minimal sys-
tems by Giordano, Putnam and Skau [6]. After that, Matsumoto [9] defined
continuous orbit equivalence on one-sided subshifts of finite type (SFTs) and
studied relations between the orbit structures of one-sided SFTs and their cor-
responding Cuntz-Krieger algebras.

Recently, Matsumoto’s continuous orbit equivalence has been generalized in
many directions. In [2, 4], the notion of orbit equivalence of directed graphs
was introduced and showed that, under a mild restriction on the graphs, orbit
equivalence of directed graphs, their graph groupoids being isomorphic, and
the existence of a diagonal preserving ∗-isomorphism between groupoid C∗-
algebras are equivalent. Moreover, relations between continuous orbit equiva-
lence on one-sided SFTs and flow equivalence on two-sided SFTs are studied in
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[3,11]. Li [8] generalized the notion of continuous orbit equivalence to topologi-
cally free group actions on totally disconnected spaces and their transformation
groupoids. Furthermore, Matsumoto [10] developed the notion of asymptotic
continuous orbit equivalence on Smale spaces and classified them in terms of
their asymptotic equivalence groupoids and associated Ruelle algebras.

In this paper, we present a generalization of continuous orbit equivalence
to induced dynamical systems on self-similar groups. For a self-similar group
(G,X), the limit dynamical system (TG, σ) is defined as the quotient of the one-
sided full shift (Xω, σ) by G-action. Then the induced system (TG, σ) has many
similarities and differences when compared to one-sided SFTs. One difference
we need to mention is that TG is a connected space. Boyle and Tomiyama [1]
showed that if X and Y are connected spaces and f : X → X and g : Y → Y are
homeomorphisms, then (X, f) and (Y, g) are orbit equivalent if and only if they
are flip conjugate. In the case of limit dynamical systems of self-similar groups,
the space TG is connected, but the shift map σ on TG is not a homeomorphism
but only a continuous surjective map. Still the connected space property implies
that when two limit dynamical systems are orbit equivalent, then they behave
like flip conjugacy (Corollary 3.7).

We will show that orbit equivalence on limit dynamical systems is equivalent
to the existence of a diagonal preserving isomorphism on the Deaconu groupoids
of the limit dynamical systems (Theorem 3.6). This result corresponds to the
classification theorems of Matsumoto [9] and Matsumoto-Matui [11] where one-
sided subshifts of finite type are continuous orbit equivalent if and only if their
associated étale groupoids are isomorphic.

There is a difference between SFTs and self-similar groups. For SFTs or
graphs, the groupoid algebras of the aforementioned étale groupoids are isomor-
phic to Cuntz-Krieger algebras or graph algebras, respectively. However, the
corresponding C∗-algebra of a self-similar group (G,X) is the Cuntz-Pimsner
algebra OG, which is isomorphic to the convolution algebra of the Cuntz-
Pimsner groupoid CG [16]. In the case of SFTs or graphs, the Cuntz-Pimsner
groupoid, called the extended Weyl groupoid in [2], is isomorphic to the Dea-
conu groupoid. On self-similar groups, while the Cuntz-Pimsner groupoid CG
is defined on the one-sided full shift Xω, the Deaconu groupoid DG is defined
on the limit space TG = q(Xω), where q : Xω → TG is the quotient map by the
G-action. Because of the quotient structure from Xω to TG, the Cuntz-Pimsner
groupoid CG and the Deaconu groupoid DG are not isomorphic to each other
but equivalent in the sense of Muhly, Renault and Williams [13].

This paper is organized as follows. In Section 2, we provide background
on self-similar groups and their limit dynamical systems. In Section 3, we
define orbit equivalence of limit dynamical systems and show that the Deaconu
groupoids and their groupoid algebras with diagonal algebras are complete
invariants of orbit equivalence on limit dynamical systems of self-similar groups.
In Section 4, we study interrelation between the Deaconu groupoids and the
Cuntz-Pimsner groupoids of self-similar groups.
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2. Self-similar groups

We review the properties of self-similar groups. Every material in this section
is taken from [15,16].

Suppose that X is a finite set. We denote by Xn the set of words of length
n in X with X0 = {∅}, and define X∗ = ∪∞n=0X

n. The set X∗ has a natural
structure of a rooted tree: the root is ∅, the vertices are words in X∗, the edges
are of the form u to ux where u ∈ X∗ and x ∈ X. Then the boundary of
the tree X∗ is identified with the space Xω of right-infinite paths of the form
x1x2 · · · where xi ∈ X. The product topology of a discrete set X is given on
Xω. A cylinder set Z(u) for each u ∈ X∗ is

Z(u) = {ξ ∈ Xω : ξ = x0x1 · · · such that x0 · · ·x|u|−1 = u}.

Then the collection of all such cylinder sets forms a basis for the product
topology on Xω.

A self-similar group (G,X) consists of a finite set X and a faithful action of
a group G on X∗ such that, for all g ∈ G and x ∈ X, there exist unique y ∈ X
and h ∈ G such that

g(xu) = yh(u) for every u ∈ X∗.

The unique element h is called the restriction of g at x and denoted by g|x.
The restriction extends to X∗ via the inductive formula

g|xy = (g|x) |y
so that for every u, v ∈ X∗ we have

g(uv) = g(u)g|u(v).

The G-action extends to an action of G on Xω given by

g(x0x1 · · · ) = g(x0 · · ·xn−1)g|x0···xn−1
(xn · · · ).

Conditions on self-similar groups

A self-similar group (G,X) is called contracting if there is a finite subset N
of G satisfying the following: For every g ∈ G, there is n ≥ 0 such that g|v ∈ N
for every v ∈ X∗ of length |v| ≥ n. If the group is contracting, the smallest
set N satisfying this condition is called the nucleus of the group. We say that
(G,X) is regular if, for every g ∈ G and every w ∈ Xω, either g(w) 6= w or
there is a neighborhood of w such that every point in the neighborhood is fixed
by g.

For a self-similar group (G,X), let X ·G = {x · g : x ∈ X, g ∈ G} be the set
of transformations on X∗ ∪Xω given by

x · g : u 7→ xg(u).

The group G acts on X ·G from left by composition:

h · (x · g) = h(x) · (h|xg).
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We say that (G,X) is recurrent if the left G-action on X ·G is transitive, i.e.,
for all x · g and y · h in X ·G, there is a γ ∈ G such that γ · (x · g) = y · h.

The following property was mentioned at [14, p. 235] without proof. So we
provide a complete proof.

Lemma 2.1. A self-similar group (G,X) satisfies the recurrent condition if
and only if, for any two words a, b of equal length and every h ∈ G, there is a
g ∈ G such that g(a) = b and g|a = h.

Proof. For all x, y ∈ X and h ∈ G, x · 1 and y · h are elements of X ·G. Then
recurrent condition implies that there is a g ∈ G such that

g · (x · 1) = g(x) · (g|x · 1) = g(x) · g|x = y · h.
So we have for every u ∈ X∗ ∪Xω

(g(x) · g|x)(u) = g(x)g|x(u) = (y · h)(u) = yh(u).

Hence g(x) = y and g|x = h hold. It is straight to check general case by
induction on the length of words.

For the converse, let x · g and y · h be arbitrary elements of X ·G. Then, for
x, y ∈ X and hg−1 ∈ G, there is a γ ∈ G such that γ(x) = y and γ|x = hg−1.
So we have γ|xg = h and

γ · (x · g) = γ(x) · (γ|xg) = y · h.
Thus (G,X) satisfies the recurrent condition. �

Standing assumption. In this paper, we assume that our self-similar group
(G,X) is a contracting, recurrent, and regular group and that the group G is
finitely generated.

Remark 2.2. We only need recurrent and regular conditions for equivalences
of dynamical systems and their corresponding groupoids of self-similar groups.
The contracting condition is required for the amenability of groupoids and
groupoid C∗-algebras. See [15, 16] for dynamical systems and C∗-algerbas of
self-similar groups.

Limit dynamical systems of self-similar groups

Suppose that (G,X) is a self-similar group. We consider the space XZ of
bi-infinite paths · · ·x−1.x0x1x2 · · · over X and the shift map σ : XZ → XZ

given by
· · ·x−1.x0x1x2 · · · 7→ · · ·x−1x0.x1x2 · · · .

The direct product topology of the discrete set X is given on XZ. We say that
two paths · · ·x−1.x0x1x2 · · · and · · · y−1.y0y1y2 · · · in XZ are asymptotically
equivalent if there is a finite set I ⊂ G and a sequence gn ∈ I such that

gn(xnxn+1 · · · ) = ynyn+1 · · ·
for every n ∈ Z. The quotient of XZ by the asymptotic equivalence relation is
called the limit solenoid of (G,X) and is denoted SG. The shift map on XZ is
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transferred to an induced homeomorphism on SG, which we will denote by σ
when there is no confusion.

Let q : XZ → SG be the quotient map by the asymptotic equivalence relation
and π : XZ → Xω the canonical projection map. We restrict the asymptotic
equivalence relation on XZ to Xω so that x0x1x2 · · · and y0y1y2 · · · in Xω are
asymptotically equivalent if there is a g ∈ G such that

g(x0x1 · · · ) = y0y1 · · · .
The quotient of Xω by the asymptotic equivalence is called the limit space of
(G,X) and denoted as TG. Then the canonical projection π : XZ → Xω and
the shift map σ : XZ → XZ induce a natural projection map SG → TG and a
shift map TG → TG

· · · ξ−1.ξ0ξ1 · · · 7→ ξ0ξ1 · · · and ξ0ξ1 · · · 7→ ξ1ξ2 · · · , respectively.

We denote these induced projection, quotient and shift maps as π, q and σ,
respectively, when there is no confusion. The restricted dynamical system
(TG, σ) is called the limit dynamical system of (G,X). Then it is easy to check
that the projection maps on XZ and SG, quotient maps on XZ and Xω, and
shift maps on XZ, Xω, SG and TG are commuting with each other.

Remark 2.3. (1) In [15,16], Nekrashevych used the shift map as

· · ·x−2x−1.x0 · · · 7→ · · ·x−2.x−1x0 · · ·
so that the limit space is given as the quotient of left-hand-sided full
shift.

(2) The limit solenoids and limit dynamical system are the quotients of
two-sided and one-sided full shifts onX, respectively, by the asymptotic
equivalence relation.

(3) The existence of g ∈ G satisfying g(x0x1 · · · ) = y0y1 · · · is equivalent
to the existence of a gn = g|x0···xn−1

∈ G such that

g(x0x1 · · · ) = y0 · · · yn−1gn(xn · · · )
for every n ∈ N.

(4) The limit solenoid SG and limit space TG are compact, connected and
Hausdorff spaces [16, Propoistion 2.4].

(5) The limit solenoid (SG, σ) is a mixing Smale space [16, Propoistion
6.10].

3. Orbit equivalence of limit dynamical systems

We generalize Matsumoto’s definition of continuous orbit equivalence for
one-sided SFTs to limit dynamical systems of self-similar groups. See [9, 11]
for more details.

Definition 3.1. Suppose that (G,X) and (H,Y ) are self-similar groups and
that (TG, σ) and (TH , σ) are their corresponding limit dynamical systems, re-
spectively. The limit dynamical systems (TG, σ) and (TH , σ) are said to be
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orbit equivalent if there are a homeomorphism h : TG → TH and nonnegative
integers k1, l1, k2, l2 such that

σk1 ◦ h ◦ σ(ξ) = σl1 ◦ h(ξ) and σk2 ◦ h−1 ◦ σ(η) = σl2 ◦ h−1(η)

for every ξ ∈ TG and η ∈ TH .

Remark 3.2. In Matsumoto’s definition for one-sided SFTs, k1, l1 : TG → N ∪
{0} and k2, l2 : TH → N∪{0} are continuous maps. In the case of limit dynam-
ical systems, TG and TH are connected spaces by Remark 2.3 so that ki and li
become constant maps.

Lemma 3.3. For every natural number n, we have

σk1n ◦ h ◦ σn(ξ) = σl1n ◦ h(ξ) and σk2n ◦ h−1 ◦ σn(η) = σl2n ◦ h−1(η).

Proof. If σk1n ◦ h ◦ σn(ξ) = σl1n ◦ h(ξ) holds for some n ∈ N, then we have

σk1n ◦ h ◦ σn+1(ξ) = σk1n ◦ h ◦ σn ◦ σ(ξ)

= σl1n ◦ h ◦ σ(ξ)

so that

σk1(n+1) ◦ h ◦ σn+1(ξ) = σk1 ◦ σk1n ◦ h ◦ σn+1(ξ)

= σk1 ◦ σl1n ◦ h ◦ σ(ξ)

= σl1n ◦ σk1 ◦ h ◦ σ(ξ)

= σl1n ◦ σl1 ◦ h(ξ)

= σl1(n+1) ◦ h(ξ).

The case of h−1 is the same. Thus the above equations are true by induction.
�

Proposition 3.4. The limit dynamical systems (TG, σ) and (TH , σ) are orbit
equivalent if and only if the natural numbers given in the definition satisfy
k1 − l1 = k2 − l2 = 1 or − 1.

Proof. Suppose that (TG, σ) and (TH , σ) are orbit equivalent. We remark that
(TG, σ) has non-eventually periodic elements by [20, Lemma 4.7]. Let η be a
non-eventually periodic element in TG. Then Lemma 3.3 implies

σk1l2 ◦ h ◦ σl2 ◦ h−1(η) = (σk1l2 ◦ h ◦ σl2)(h−1(η))

= σl1l2 ◦ h ◦ h−1(η) = σl1l2(η)

= (σk1l2 ◦ h)(σl2 ◦ h−1(η))

= σk1l2 ◦ h ◦ σk2 ◦ h−1 ◦ σ(η)

and

σk1k2 ◦ σl1l2(η) = σk1k2 ◦ σk1l2 ◦ h ◦ σk2 ◦ h−1 ◦ σ(η)

= σk1l2 ◦ σk1k2 ◦ h ◦ σk2 ◦ h−1 ◦ σ(η)
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= σk1l2 ◦ (σk1k2 ◦ h ◦ σk2)(h−1 ◦ σ(η))

= σk1l2 ◦ (σl1k2 ◦ h)(h−1 ◦ σ(η))

= σk1l2+k2l1+1(η).

So we have k1k2 + l1l2 = k1l2 + k2l1 + 1 and

k1k2 + l1l2 − k1l2 − k2l1 = 1 = (k1 − l1)(k2 − l2).

Since ki and li are natural numbers, we conclude that k1−l1 = k2−l2 = 1 or −1.
The converse is trivial. �

Suppose that (G,X) is a self-similar group and that (TG, σ) is its limit
dynamical system. The Deaconu groupoid of (TG, σ) is

DG = {(ξ,m− n, η) : ξ, η ∈ TG,m, n ∈ N, σm(ξ) = σn(η)}.

A pair {(ξ,m − n, η), (χ, k − l, ζ)} ∈ D
(2)
G is composable if η = χ, and

multiplication and inverse are given by

(ξ,m−n, η)(η, k− l, ζ) = (ξ,m−n+k− l, ζ) and (ξ,m−n, η)−1 = (η, n−m, ξ).

With these operations, DG is a groupoid. For (ξ,m− n, η) ∈ DG, the domain
and range are given by

d(ξ,m− n, η) = (ξ, 0, ξ) and r(ξ,m− n, η) = (η, 0, η).

The unit space of DG denoted by D
(0)
G is identified with TG via the diagonal

map, and the isotropy group bundle is given by I = {(ξ,m, ξ) ∈ DG}. For
open sets U, V of T(G,E) and k, l ≥ 0, let

Z(U, k, l, V ) = {(ξ, k − l, η) : ξ ∈ U, η ∈ V, σkx = σly}.

Then the collection of these sets is a basis for a second countable locally compact
Hausdorff topology on DG, and the counting measure is a Haar system of DG

[5]. If (G,X) is a self-similar group satisfying the Standing Assumption, then
the Deaconu groupoid DG is an étale, amenable, topologically principal, locally
compact, Hausdorff groupoid.

Proposition 3.5. For every (ξ,m − n, η) ∈ DG, σk(ξ) = σl(η) holds for all
k, l ∈ N such that k − l = m− n.

Proof. If k > m, then k −m = l − n implies

σk(ξ) = σk−m ◦ σm(ξ) = σl−n ◦ σn(η) = σl(η).

If k < m, choose any x = x0x1 · · · ∈ q−1(ξ) and y = y0y1 · · · ∈ q−1(η)
where q : Xω → TG is the quotient map. As the shift maps on Xω and TG,
respectively, and the quotient map are commuting to each other, we have

σm(x) = xmxm+1 · · · ∈ q−1(σm(ξ)) and σn(y) = ynyn+1 · · · ∈ q−1(σn(η)).
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Thus σm(ξ) = σn(η) implies that σm(x) = xmxm+1 · · · and σn(y) = ynyn+1 · · ·
are asymptotically equivalent so that there is an h ∈ G such that

h(xmxm+1 · · · ) = ynyn+1 · · · .

Because m− k = n− l, we have |xk · · ·xm−1| = |yl · · · yn−1|. Then Lemma 2.1
implies that there is a g ∈ G such that

g(xk · · ·xm−1) = yl · · · yn−1 and g|xk···xm−1 = h.

Hence

g(σk(x)) = g(xk · · ·xm−1xm · · · )
= g(xk · · ·xm−1)g|xk···xm−1(xm · · · )
= yl · · · yn−1h(xm · · · )
= yl · · · yn−1yn · · ·

= σl(y)

implies that σk(x) is asymptotically equivalent to σl(y). So we have

q(σk(x)) = σk ◦ q(x) = σk(ξ) = σl(η) = σl ◦ q(y) = q(σl(y)).

Therefore σk(ξ) = σl(η) holds for all k, l ∈ N such that k − l = m− n. �

Theorem 3.6 ([11, Theorem 2.3]). Let (TG, σ) and (TH , σ) be the limit dy-
namical systems of self-similar groups (G,X) and (H,Y ), respectively. Then
the following assertions are equivalent:

(1) (TG, σ) and (TH , σ) are orbit equivalent.
(2) The Deaconu groupoids DG and DH are isomorphic.
(3) There is a C∗-isomorphism Ψ: C∗(DG) → C∗(DH) with Ψ(C(TG)) =

C(TH).

Proof. (1) =⇒ (2). Suppose that (TG, σ) and (TH , σ) are orbit equivalent and
that h : TG → TH is the corresponding homeomorphism. For every (ξ,m −
n, η) ∈ DG, σm(ξ) = σn(η) and Lemma 3.3 imply that

σml1 ◦ h(ξ) = σmk1 ◦ h ◦ σm(ξ) = σmk1 ◦ h ◦ σn(η)

and

σnk1 ◦ σml1 ◦ h(ξ) = σnk1 ◦ σmk1 ◦ h ◦ σn(η)

= σmk1 ◦ σnk1 ◦ h ◦ σn(η)

= σmk1 ◦ σnl1 ◦ h(η).

So (h(ξ), (m− n)(l1 − k1), h(η)) ∈ DH . Here, we recall that l1 − k1 = 1 or −1

by Proposition 3.4. Define h̃ : DG → DH by

(ξ,m− n, η) 7→ (h(ξ), (m− n)(l1 − k1), h(η)).

Then it is trivial that h̃ is a continuous groupoid isomorphism.
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(2) =⇒ (1). Suppose that h̃ : DG → DH is a continuous isomorphism. When

we define h = h̃|
D

(0)
G

: TG → TH , h is obviously a homeomorphism. Since h̃ is a

groupoid isomorphism,

d(h̃(ξ,m, η)) = h̃(r(ξ,m, η)) = h̃(ξ, 0, ξ) = h(ξ) and

r(h̃(ξ,m, η)) = h̃(d(ξ,m, η)) = h̃(η, 0, η) = h(η)

imply that h̃(ξ,m, η) = (h(ξ), h̃|Z(m), h(η)). Then we observe

h̃((ξ,m, η)(η, n, ζ)) = h̃(ξ,m+ n, ζ) = (h(ξ), h̃|Z(m+ n), h(ζ))

= h̃(ξ,m, η)h̃(η, n, ζ)

= (h(ξ), h̃|Z(m), h(η))(h(η), h̃|Z(n), h(ζ))

= (h(ξ), h̃|Z(m) + h̃|Z(n), h(ζ))

and for every m,n ∈ Z,

h̃|Z(m+ n) = h̃|Z(m) + h̃|Z(n).

Hence h̃|Z is a group homomorphism on Z. Because h̃ is surjective, h̃|Z is

also a surjective homomorphism, i.e., h̃|Z is an automorphism on Z so that

h̃|Z(m) = m or −m for every m ∈ Z.
For every ξ ∈ TG, consider (ξ, 1, σ(ξ)) ∈ DG and

h̃(ξ, 1, σ(ξ)) = (h(ξ), h̃|Z(1), h(σ(ξ))) ∈ DH .

Then Proposition 3.5 implies that

σ ◦ h(ξ) = h ◦ σ(ξ) if h̃|Z(1) = 1,

h(ξ) = σ ◦ h ◦ σ(ξ) if h̃|Z(1) = −1.

By Proposition 3.4, we have the same relations for h̃−1. Therefore (TG, σ) and
(TH , σ) are orbit equivalent.

(2)⇐⇒ (3) follows from [12, Theorem 5.1] as DG and DH are topologically
principal. �

We obtain the following from the proof of the above theorem.

Corollary 3.7 ([9, Theorem 5.6]). Let (TG, σ) and (TH , σ) be the limit dy-
namical systems of self-similar groups (G,X) and (H,Y ), respectively. Then
(TG, σG) and (TH , σH) are orbit equivalent if and only if there is a homeomor-
phism h : TG → TH such that either h ◦ σG = σH ◦ h or σH ◦ h ◦ σG = h.

Remark 3.8. Let X and Y be compact connected Hausdorff spaces and f : X →
X and g : Y → Y homeomorphisms. In [1], Boyle and Tomiyama showed
that orbit equivalence between (X, f) and (Y, g) implies flip conjugacy between
them, i.e., h◦f = g ◦h or h◦f = g−1 ◦h for some homeomorphism h : X → Y .
The above Corollary is a generalization of Boyle and Tomiyama’s result to
epimorphism case.
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4. Groupoids on self-similar groups

Cuntz-Pimsner algebras and groupoids

Suppose that (G,X) is a self-similar group. The Cuntz-Pimsner algebra OG
of a self-similar group (G,X) is the universal C∗-algebra generated by the sets
G and {sx : x ∈ X} satisfying the following relations ([16, Definition 3.1]):

(1) All relations of G,
(2) s∗xsx = 1 for every x ∈ X and

∑
x∈X sxs

∗
x = 1, and

(3) for all g ∈ G and x ∈ X, g · sx = sg(x) · g|x.

We denote by 〈G,X〉 the inverse semigroup generated by the elements sx,
s∗x and G in OG. For u = u1 · · ·un ∈ Xn, we let su = su1

· · · sun
and s∗u =

s∗un
· · · s∗u1

. Likewise, we also let s∅ be the identity. Then it is easy to observe
that every element of 〈G,X〉 is uniquely written in the form sugs

∗
v for some

u, v ∈ X∗ and g ∈ G [16, Proposition 3.2].
The inverse semigroup 〈G,X〉 acts faithfully on Xω by the partial homeo-

morphism
sugs

∗
v(vw) = ug(w)

with domain vXω and range uXω. The groupoid of germs of 〈G,X〉 is denoted
by CG and called the Cuntz-Pimsner groupoid of (G,X). It is a well-known
fact that the groupoid CG is an étale, amenable, topologically principal, lo-
cally compact and Hausdorff groupoid. The étale, topologically principal, lo-
cally compact and Hausdorff properties come from the definition of groupoids
of germs. Amenable is from [16, Theorem 5.6]. We refer to [17, 19] for the
definition and properties of groupoids of germs and groupoid algebras.

Theorem 4.1 ([16, Theorem 5.1]). The Cuntz-Pimsner algebra OG is isomor-
phic to the convolution C∗-algebra of CG.

Proposition 4.2. In the Cuntz-Pimsner groupoid CG, [sugs
∗
v, vw] = [sahs

∗
b , bc]

if and only if vw = bc, ug(w) = ah(c) and |v| − |b| = |u| − |a| hold.

Proof. By definition of the groupoids of germs, [sugs
∗
v, vw] = [sahs

∗
b , bc] if and

only if vw = bc and sugs
∗
v = sahs

∗
b on a neighborhood of vw.

For v = v0 · · · vn and b = b0 · · · bm with vw = bc, we have{
b = vbn+1 · · · bm and w = bn+1 · · · bmc if n < m,

v = bvm+1 · · · vn and c = vm+1 · · · vnw if n > m.

If vw = bc, |v| < |b| and sugs
∗
v = sahs

∗
b on a neighborhood of vw, then

ug(w) = sugs
∗
v(vw) = sugs

∗
v(vbn+1 · · · bmc)

= sug(bn+1 · · · bmc)
= sug(bn+1 · · · bm)gbn+1···bm(c)

= ug(bn+1 · · · bm)g|bn+1···bm(c)

= sahs
∗
b(bc)
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= ah(c)

implies ug(w) = ah(c) and |a| = |u|+ |b| − |v|.
Conversely, if vw = bc, |v| < |b|, ug(w) = ah(c) and |v| − |b| = |u| − |a| hold,

then ug(w) = ah(c) and |a| = |b| − |v|+ |u| mean u = a0 · · · a|u|−1 and

g(w) = g(bn+1 · · · bmc) = g(bn+1 · · · bm)g|bn+1···bm(c) = a|u|a|u|+1 · · · a|a|−1h(c).

So we have

ug(bn+1 · · · bm) = a and g|bn+1···bm(c) = h(c).

On the second equality above, the regular condition on (G,X) implies that
there is a neigborhood U of c such that g|bn+1···bm(β) = h(β) for every β ∈ U .
It is trivial that bU = {bβ ∈ Xω : β ∈ U} is a neighborhood of bc = vw. Now
we show sugs

∗
v = sahs

∗
b on bU . For every bβ = vbn+1 · · · bmβ ∈ bU , we have

sugs
∗
v(bβ) = sugs

∗
v(vbn+1 · · · bmβ)

= sug(bn+1 · · · bmβ)

= sug(bn+1 · · · bm)g|bn+1···bm(β)

= ug(bn+1 · · · bm)h(β)

= ah(β)

= sahs
∗
b(bβ),

and sugs
∗
v = sahs

∗
b on bU . The case for |v| > |b| can be obtained by the same

argument. �

Computation gives us the following lemma.

Corollary 4.3. If [sugs
∗
v, vw] and [sahs

∗
b , bc] are composable in CG, then

[sugs
∗
v, vw] · [sahs∗b , bc] =

{
[sug(α)g|αhs∗b , bc] if a = vα,

[sug(h−1|β)−1s∗bh−1(β), bc] if v = aβ.

Relations between CG and DG

To study properties of CG and DG more conveniently, we construct another
groupoid between them.

Lemma 4.4. The quotient map q : Xω → TG by the asymptotic equivalence
relation is an open map.

Proof. Let π′ : XZ → Xω and π : SG → TG be canonical projection maps and
q′ : XZ → SG the quotient map. Then it is trivial that the projection maps are
open maps and q ◦π′ = π ◦ q′. Since q′ is also an open map by [20, Proposition
3.4], for every open set U in Xω, q(U) = π ◦ q′ ◦ π−1(U) shows that q is an
open map. �

Because the quotient map q is an open map, the following holds.
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Proposition 4.5 ([7, Lemma 5.1]). The Deaconu groupoid DG is equivalent
to

Dq
G = {(x, (q(x),m− n, q(y)), y) : x, y ∈ Xω, (q(x),m− n, q(y)) ∈ DG}

in the sense of Muhly, Renault and Williams.

Proposition 4.6. The Cuntz-Pimsner groupoid CG is isomorphic to Dq
G as

topological groupoids.

Proof. For (x, (q(x),m−n, q(y)), y) ∈ Dq
G, (q(x),m−n, q(y)) ∈ DG means that

σm ◦ q(x) = σn ◦ q(y) = q ◦ σm(x) = q ◦ σn(y)

so that there is a g ∈ G such that g(σm(x)) = σn(y). Thus we have

g(σm(x)) = gs∗x0···xm−1
(x) = σn(y)

and

y = y0 · · · yn−1σn(y) = sy0···yn−1gs
∗
x0···xm−1

(x).

Define f : Dq
G → CG by

(x, (q(x),m− n, q(y)), y) 7→ [sy0···yn−1
gs∗x0···xm−1

, x].

Then it is routine to check that f is a continuous groupoid isomorphism. �

Remark 4.7. A group element g satisfying g(σm(x)) = σn(y) is not unique.
But, if g, h ∈ G are such that g(σm(x)) = h(σm(x)), then the regular condition
implies g = h on a neighborhood of σm(x) so that

[sy0···yn−1
gs∗x0···xm−1

, x] = [sy0···yn−1
hs∗x0···xm−1

, x].

Now the following four corollaries are trivial from Propositions 4.5, 4.6 and
[13].

Corollary 4.8. (1) The Cuntz-Pimsner groupoid CG and the Deaconu group-
oids DG are equivalent in the sense of Muhly, Renault and Williams.

(2) The Cuntz-Pimsner algebras OG and the groupoid algebras C∗(DG) are
stably isomorphic.

Remark 4.9. The Cuntz-Pimsner algebra OG is stably isomorphic to the un-
stable Ruelle algebra of the limit solenoid (SG, σ) [16, Theorem 6.11]. Since
the unstable equivalence on SG is determined by asymptotic equivalence on
right-tail of bi-infinite sequences [16, Proposition 6.8] and TG is the restriction
of SG on the right-hand-side, the Deaconu groupoid DG is equivalent to the
unstable Ruelle groupoid of (SG, σ) [18].

Corollary 4.10. Suppose that (G,X) and (H,Y ) are self-similar groups.

(1) The Cuntz-Pimsner groupoids CG and CH are equivalent if and only
if the Deaconu groupoids DG and DH are equivalent in the sense of
Muhly, Renault and Williams.
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(2) The Cuntz-Pimsner algebras OG and OH are stably isomorphic if and
only if the groupoid algebras C∗(DG) and C∗(DH) are stably isomor-
phic.

Corollary 4.11. The induced quotient map q̃ : CG → DG defined by

[sugs
∗
v, vw] '(vw, (q(vw), |v| − |u|, q(ug(w))), ug(w))

7→ (q(vw), |v| − |u|, q(ug(w)))

is a continuous groupoid epimorphism.

Corollary 4.12. For every (q(ab), |a| − |c|, q(cd)) ∈ DG,

q̃−1(q(ab), |a| − |c|, q(cd))

=

{
(αβ, (q(αβ), |α| − |γ|, q(γδ)), γδ) :

αβ ∈ q−1(q(ab)), γδ ∈ q−1(q(cd)),

|a| − |c| = |α| − |γ|

}

=

{
[sγgs

∗
α, αβ] :

g ∈ G,αβ ∈ q−1(q(ab)), γg(β) ∈ q−1(q(cd)),

|a| − |c| = |α| − |γ|

}
.

Theorem 4.13. If the Cuntz-Pimsner groupoids CG and CH are isomorphic as
topological groupoids, then the Deaconu groupoids DG and DH are isomorphic
as topological groupoids.

Proof. We consider Dq
G and Dq

H instead of CG and CH , respectively. Sup-
pose that φ : Dq

G → Dq
H is a groupoid isomorphism such that φ and φ−1 are

continuous. Then
φ(Dq

G
(0)

) = Dq
H

(0)

implies that there is a homeomorphism f : Xω → Y ω such that f = φ|Dq
G

(0) .

Since the groupoid isomorphism φ satisfies

d ◦ φ = φ ◦ d and r ◦ φ = φ ◦ r,
where d and r are domain and source maps, respectively, of groupoids, we have

d ◦ φ(x, (q(x),m− n, q(y)), y) = φ ◦ d(x, (q(x),m− n, q(y)), y)

= φ(x, (q(x), 0, q(x)), x)

= (f(x), (q ◦ f(x), 0, q ◦ f(x)), f(x)) and

r ◦ φ(x, (q(x),m− n, q(y)), y) = (f(y), (q ◦ f(y), 0, q ◦ f(y)), f(y))

so that φ is given as one of the followings:

φ(x, (q(x),m− n, q(y)), y) = (f(x), (q ◦ f(x),m− n, q ◦ f(y)), f(y)) or

φ(x, (q(x),m− n, q(y)), y) = (f(x), (q ◦ f(x), n−m, q ◦ f(y)), f(y)).

We only prove the first case, and leave the second one to the readers.
When φ(x, (q(x),m − n, q(y)), y) = (f(x), (q ◦ f(x),m − n, q ◦ f(y)), f(y)),

we define ψ : DG → DH by

(q(x),m− n, q(y)) 7→ (q ◦ f(x),m− n, q ◦ f(y)).
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First check that φ is well-defined: Let (q(x),m−n, q(y)) = (q(a),m−n, q(b))
in DG, and show

(q ◦ f(x),m− n, q ◦ f(y)) = (q ◦ f(a),m− n, q ◦ f(b)).

Since (x, (q(x), 0, q(a)), a) and (y, (q(y), 0, q(b)), b) are elements of Dq
G,

φ(x, (q(x), 0, q(a)), a) = (f(x), (q ◦ f(x), 0, q ◦ f(a)), f(a)) and

φ(y, (q(y), 0, q(b)), b) = (f(y), (q ◦ f(y), 0, q ◦ f(b)), f(b))

are elements of Dq
H so that

(q ◦ f(x), 0, q ◦ f(a)) and (q ◦ f(y), 0, q ◦ f(b))

are included in DH . Then Proposition 3.5 induces

q ◦ f(x) = q ◦ f(a) and q ◦ f(y) = q ◦ f(b).

Thus φ is a well-defined map.
For (q(x),m− n, q(y)) and (q(y), k − l, q(z)) in DG,

(q(x),m− n, q(y)) · (q(y), k − l, q(z)) = (q(x),m+ k − n− l, q(z))

and

ψ(q(x),m− n, q(y)) · ψ(q(y), k − l, q(z))
= (q ◦ f(x),m− n, q ◦ f(y)) · (q ◦ f(y), k − l, q ◦ f(z))

= (q ◦ f(x),m− n+ k − l, q ◦ f(z))

= ψ(q(x),m+ k − n− l, q(z))

show that ψ is a groupoid homomorphism.
If ψ(q(x),m− n, q(y)) = ψ(q(u),m− n, q(v)), then

q ◦ f(x) = q ◦ f(u) and q ◦ f(y) = q ◦ f(v).

So we have

(q ◦ f(x), 0, q ◦ f(u)) and (q ◦ f(y), 0, q ◦ f(v)) ∈ DH ,

which imply (q(x), 0, q(u)) and (q(y), 0, q(v)) are elements of DG. Hence Propo-
sition 3.5 implies q(x) = q(u) and q(y) = q(v). Thus ψ is a monomorphism.

Because f and q̃ are onto maps, it is not difficult to see that ψ is also a
continuous onto map. The inverse of ψ is defined by

(q(u),m− n, q(v)) 7→ (q ◦ f−1(u),m− n, q ◦ f−1(v)).

It is trivial that ψ−1 is a continuous groupoid isomorphism. Therefore ψ is a
groupoid isomorphism such that ψ and ψ−1 are continuous. �

Remark that the inverse semigroups 〈G,X〉 and 〈H,Y 〉 of the self-similar
groups (G,X) and (H,Y ), respectively, are isomorphic if there is a homeomor-
phism f : Xω → Y ω such that f ◦ 〈G,X〉 ◦ f−1 = {f ◦ α ◦ f−1 : α ∈ 〈G,X〉} =
〈H,Y 〉.
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Theorem 4.14. Suppose that (G,X) and (H,Y ) are self-similar groups. Then
the following are equivalent:

(1) 〈G,X〉 is isomorphic to 〈H,Y 〉.
(2) CG is isomorphic to CH as topological groupoids.
(3) There is a ∗-isomorphism Φ: OG → OH with Φ(C(Xω)) = C(Y ω).

Proof. (1) =⇒ (2). If 〈G,X〉 is isomorphic to 〈H,Y 〉 with a homeomorphism
f : Xω → Y ω, we define

φ : CG → CH by [α, x] 7→ [f ◦ α ◦ f−1, f(x)].

If [α, x] = [β, x], then there is a neighborhood U of x such that α|U = β|U .
Since f is a homeomorphism, f(U) is also a neighborhood of f(x) so that

f ◦ αf−1|f(U) = f ◦ α|U = f ◦ β|U = f ◦ β ◦ f−1|f(U).

Hence φ is well-defined. It is routine to check that φ is a groupoid isomorphism.
To show that φ is a continuous map, choose a base element (γ, V ) of germ
topology on CH . Then V is an open set in Y ω, and φ−1(γ, V ) = (f−1 ◦ γ ◦
f, f−1(V )) is a base element of CG. So φ is continuous. By the same argument,
φ−1 is also continuous. Thus CG is isomorphic to CH as topological groupoids.

(2) =⇒ (1). If φ : CG → CH is a continuous isomorphism, we identify Xω

with the unit space C
(0)
G and define

f = φ|Xω .

Then it is trivial that f is a homeomorphism. We show f−1 ◦ 〈H,Y 〉 ◦ f =
〈G,X〉.

For every sags
∗
b ∈ 〈G,X〉 and bx ∈ Xω with sags

∗
b(bx) = ay, we have

(q(bx), |b| − |a|, q(ay)) ∈ DG

so that, by Proposition 3.5,

σ|b| ◦ q(bx) = q(x) = q(y) = σ|a| ◦ q(ay).

Because of q(x) = q(y), x is asymptotically equivalent to y, and there is a g ∈ G
such that g(x) = y. Moreover

φ(q(bx), |b| − |a|, q(ay)) = (q ◦ f(bx), |b| − |a|, q ◦ f(ay)) ∈ DH

implies

σ|b| ◦ q ◦ f(bx) = q ◦ σ|b| ◦ f(bx) = q ◦ σ|a| ◦ f(ay) = σ|a| ◦ q ◦ f(ay),

and there is an h ∈ H such that

h(σ|b| ◦ f(bx)) = σ|a| ◦ f(ay).

Let u ∈ X |a| and v ∈ X |b| be the prefixes of f(ay) and f(bx), respectively, so
that

u · σ|a| ◦ f(ay) = f(ay) and v · σ|b| ◦ f(bx) = f(bx).

Then

f(ay) = u · (σ|a| ◦ f(ay))
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= u · h(σ|b| ◦ f(bx))

= suhs
∗
v(v · σ|b| ◦ f(bx))

= suhs
∗
v(f(bx))

= suhs
∗
v ◦ f(bx)

implies
ay = f−1 ◦ suhs∗v ◦ f(bx) = sags

∗
b(bx).

Therefore f−1 ◦ 〈H,Y 〉 ◦ f = 〈G,X〉 holds, and 〈G,X〉 is isomorphic to 〈H,Y 〉.
(2)⇐⇒ (3) follows from [12, Theorem 5.1]. �

Corollary 4.15. If there is a ∗-isomorphism Φ: OG → OH with Φ(C(Xω))
= C(Y ω), then (TG, σ) and (TH , σ) are orbit equivalent. Conversely, if (TG, σ)
and (TH , σ) are orbit equivalent, then the Cuntz-Pimsner algebras OG and OH
are stably isomorphic.
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