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CONDITIONAL EXPECTATION OF PETTIS INTEGRABLE

UNBOUNDED RANDOM SETS

Mohamed El Harami

Abstract. In this paper we established new results of existence of con-

ditional expectation for closed convex and unbounded Pettis integrable
random sets without assuming the Radon Nikodym property of the Ba-

nach space. As application, new versions of multivalued Lévy’s martin-
gale convergence theorem are proved by using the Slice and the linear

topologies.

1. Introduction

There are many papers in the literature showed that the conditional expec-
tation of Bochner integrable vector valued random variables (resp. multi-valued
random sets) defined in a probability space is always exists (see for example,
[6,8,11,19,23]). This theory of conditional expectation is the basic foundation
of the study of conditional expectation convergence theorems, martingales con-
vergence theorems, and strong law of large number theorems. So this study
has been developed extensively and applied to the mathematical economics
and optimal control theory. Therefore it is natural to ask, does the conditional
expectation of Pettis integratable random set exists? With no additional con-
ditions imposed, the answer of this question is negative, see counter example
6-4-1, which is taken from Talagrand [25]. But if the Banach space E possesses
the weak Radon-Nikodym property (WRNP ), [21] has given a necessary and
sufficient condition of existence of conditional expectation for Pettis integrable
random variables. In the multi-valued case a same result has been proved by
[28] for convex and weakly compact valued Pettis integrable random sets. For
more information on this study, some results can be found in [3, 15]. In the
last ten years, without the WRNP property of the Banach space and under
the condition EB(|X|) < +∞, [1] have proved this existence result for convex
and weakly compact valued Pettis integrable random sets. This result has been
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extended by [13] in case where (Ω,F , µ) is only a σ-finite measure space. Re-
cently, [2] established an extension of this result to the case where the random
sets are only with closed convex and bounded values. In this paper we are in-
terested to the same question of existence of this operator, but for random sets
are only with closed convex and unbounded values, which is more general than
the case where the random sets are with convex weakly compact (resp. closed
convex and bounded) values. The technique used in this section to prove this
existence result based on decomposable sets. As application of the existence of
EB(X) in the second section, we extend the Lévy’s convergence theorem to the
closed convex valued Pettis integrable random sets treating by the Slice and
the linear topologies, compare with the works in [1,9,10,14,24,26] dealing with
the Mosco topology and closed convex and bounded (resp. convex and weakly
compact) random sets.

2. Elementary material

Throughout this paper, (Ω,F , µ) is a complete probability measure space, E
a real Banach space, E′ the topological dual of E, and B′ the closed unit ball
of E′. Denote by cl(E) (resp. cc(E)) (resp. ccb(E)) (resp. cwk(E)) the family
of all nonempty closed (resp. closed convex) (resp. closed convex bounded)
(resp. convex and weakly compact) subsets of E. For a subset C ∈ 2E \ ∅, C
(resp. co(C)) the norm-closure (resp. the close convex hull) of C. A subset of
cc(E) will be called w-ball-compact if its intersection with any closed ball is
weakly compact, the family of all w-ball compact is denoted by

Rw = {C ∈ cc(E), C ∩B(x0, r) is weakly compact ∀ r > 0},

where B(x0, r) is the open ball with the center x0 and radius r. The support
function and radius of a subset C are defined as follows:

δ∗(x′, C) = sup
x∈C
〈x′, x〉, |C| = sup

x∈C
‖x‖.

The topology determined by convergence of support functional is denoted by
Tscalar, a sequence (Cn) is Tscalar convergent to some subset C if

lim
n
δ∗(x′, Cn) = δ∗(x′, C) ∀x′ ∈ E′.

The distance functional is the mapping: d : E × 2E \ ∅ −→ R+ such that

d(x,C) = inf
a∈C
‖x− a‖.

The topology determined by convergence of distance functionals is called the
Wijsman topology and is denoted by Twijsman. For (Cn) ⊂ cc(E) and C ∈
cc(E), let

s− liCn = {x, x = s− lim
k
xk, xk ∈ Ck, k ≥ 1},

w − lsCn = {x, x = w − lim
k
xk, xk ∈ Cnk

, k ≥ 1}.
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s and w are respectively the norm topology and the weak topology of E. We
say that (Cn) is Mosco convergent to C (denoted C = Mosco− limn Cn) if

s− liCn = w − lsCn = C.

This hold if and only if we have w− lsCn ⊂ C ⊂ s− liCn (see [20], p. 188). The
Slice topology on P(E) is the initial topology TSlice determined by the family
of gap functionals

{D(C, ·), C is non empty slice of a ball},
where D(B,C) = inf{‖b − c‖, b ∈ B, c ∈ C}, and a slice of a ball is an in-
tersection of B(x0, r) ∩ {x, 〈x′, x〉 ≤ α} (provided it is not empty). The Slice
topology is generally stronger than the Mosco and the Wijsman topologies. It
coincides with the Mosco topology if the space E is reflexive (see Beer [5]). We
have the following characterization of TSlice:

Lemma 2.1. Let (Cn, C)n≥1 be a sequence in cc(E). Then C = TSlice −
limn Cn if and only if

(i) limn d(x,Cn) = d(x,C) ∀x ∈ E.
(ii) ∀x′ ∈ E′, and whenever r > 0 such that C ∩B(0, r) 6= ∅ we have

lim
n
δ∗(x′, Cn ∩B(0, r)) = δ∗(x′, C ∩B(0, r)).

Proof. See Theorem 5.4 in Beer [5]. �

The linear topology TB introduced by Beer [5] is the upper bound of the
following topologies:

(1-) the one of simple convergence of distance functions on E.
(2-) the one of simple convergence of support functions on E′.
From Theorem 3.4 in [5] a sequence (Cn) in P(E) \ ∅ converges to some

subset C in linear topology if and only if

lim
n
d(x,Cn) = d(x,C) and lim

n
δ∗(x′, Cn) = δ∗(x′, C) ∀x′ ∈ E′.

This topology is stronger than the Mosco topology.
Next denote by L1

E(Ω,F , µ) the space of all (equivalence classes) of F-
measurable and Bochner integrable functions X : Ω → E. L∞R+(Ω,F , µ) is
the space of all equivalence classes of F-measurable essentially bounded func-
tions X : Ω→ R+.

The map X : Ω −→ 2E \ ∅ is called be a multifunction (or set valued
function, correspondence, etc). We say that it is scalarly measurable if for all
x′ ∈ E′, the map δ∗(x′, X(·)) is measurable. X said to be Effros measurable (or
measurable) if for every open subset U of E, the subset X−(U) = {ω,X(ω) ∩
U 6= ∅} is a member of F . The Effros measurability is stronger than the scalar
measurability. Both notions of measurability coincide for more general classes
of multifunctions (see Amri-Hess [12]). A measurable multifunction is called a
random set. A function f from Ω into E is called a selection of X if for any ω ∈
Ω one has f(ω) ∈ X(ω) and denote by SX the set of all measurable selections of



362 M. EL HARAMI

X. It is well known that every measurable cl(E)-valued multifunction X admits
at least one measurable selection. Furthermore, a multifunction X : Ω −→
cl(E) is measurable if and only if there is a countable family of measurable

selections (fn) such that for each ω ∈ Ω X(ω) = {fn(ω), n ∈ N} where the
closure is taken with respect to the norm in E (see Castaing-Valadier [6, §3,
p. 67]).

Let L1
cl(E)(F) := L1

cl(E)(Ω,F , µ) be the space of all random sets X with

values in cl(E) such that |X(·)| ∈ L1
R(Ω,F , µ), and is called the space of

integrably bounded random sets with values in cl(E). Denote by S1
X the set of

all measurable and integrable selections of X and is non empty if and only if
d(0, X(·)) ∈ L1

R(Ω,F , µ), in such a case we shall say that the multifunction X
is integrable (see Hess [17] and Lemma 5.1 in Hess [18]).

A random set with values in cl(E) is Aumann integrable if S1
X 6= ∅, the

Aumann integral of X is defined by∫
A

Xdµ = {
∫
A

fdµ, f ∈ S1
X}.

Let B be a sub-σ-algebra of F and X be an integrable random variable defined
in (Ω,F , µ) with values in a Banach space E. Then the conditional expectation
of X with respect to B is the unique B-measurable and integrable random
variable Y := EB(X) such that∫

A

Xdµ =

∫
A

Y dµ for all A ∈ B.

It is well known that if X is a random set such that X ∈ L1
cl(E)(F), Hiai-

Umegaki [19] proved that EB(X) exists and satisfying

S1
EB(X)(B) = cl{EB(f) : f ∈ S1

X}.

A random set X : Ω→ cl(E) is Pettis integrable whenever
1- (δ∗(x′, X))− ∈ L1

R(Ω,F , µ), where (δ∗(x′, X))− is the negative part.
2- For all A ∈ F , there exists CA(X) ∈ cl(E) such that

δ∗(x′, CA(X)) =

∫
A

δ(x′, X)dµ ∀x′ ∈ E′,

CA(X) is called the Pettis or the weak integral of X over A and is denoted by
w −

∫
A
Xdµ. A E-valued function f is Pettis integrable if and only if the set

{〈x′, f〉, x′ ∈ B′} is uniformly integrable. This equivalence is not true in the
multivalued case (see Amri-Hess [12]). Let us denote by P 1

E(F) := P 1
E(Ω,F , µ)

the space of all F-measurable and Pettis integrable functions. In this space we
define the following topologies:

1) The topology of the Pettis norm is defined as:

‖f‖Pe = sup
x′∈B′

∫
Ω

|〈x′, f〉|dµ,

which is equivalent to the norm supA∈F ‖
∫

Ω
fdµ‖.
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2) The topology induced by duality (P 1
E(F), L∞ ⊗ E′), such the operator

defined as (v⊗x′, f) =
∫

Ω
v(ω)〈x′, f(ω)〉dµ is a bilinear form. This topology is

denoted by W − Pe and called the weak topology in P 1
E(F). There is another

topology in the space of scalarly integrable functions denoted by TPe and gen-
erated by the semi-norms defined as, for each x′ ∈ B′, px′(f) =

∫
Ω
|〈x′, f〉|dµ,

its trace on P 1
E(F) is between W − Pe and ‖ · ‖Pe (for more information see

Godet-Thobie and Satco [16]).
Denote by SPeX (B) the set of all B-measurable and Pettis integrable selections

of X, if B = F we can reduce this notation to SPeX . A cl(E)-valued random
set X is said to be Aumann-Pettis integrable if SPeX 6= ∅. The Aumann-Pettis
integral of X over A is defined by∫

A

Xdµ = {
∫
A

fdµ, f ∈ SPeX },

this integral is denoted by IA(X).

Remark 2.2. It is well known from [12] that if a cc(E)-valued random set X
is Aumann Pettis integrable and (δ∗(x′, X))− is integrable, then X is Pettis
integrable. Also if X is random set such that δ∗(x′, X) ∈ L1

R and is Pettis
integrable in cc(E), then it is Pettis integrable in ccb(E) (the result comes
from the fact that a subset is bounded if and only if its support function is
finite in each point of E′).

Lemma 2.3 (see Godet-Thobie and Satco [16]). If f is E-valued and scalarly
integrable random variable. Then the following properties are equivalent:

1) f is Pettis integrable,
2) The set {〈x′, f〉, x′ ∈ B′} is uniformly integrable in L1

R.

3. Conditional expectation of Pettis integrable unbounded random
sets

Several extensions of the Hiai and Umegaki [19] results on the existence
of conditional expectation have been proved in the case of Pettis integrable
random sets see the works of [1, 3, 13, 15, 28]. Recently, another result in the
same direction have been proved in [2] for closed convex and bounded valued
Pettis integrable random sets. In this section, using the decomposable sets
technique, we continue this study with anther extension of this result dealing
by closed convex and unbounded valued Pettis integrable random sets and a
Banach space E without the WRNP property. For the WRNP property of a
Banach space we refer to the well known papers of [21,22] and for decomposable
sets we refer to [16]. We start this section by the following lemmas that will
be useful in the proof of our main results. First we extend Lemma 1.3 of [19]
to the Aumann-Pettis integrable random sets.

Lemma 3.1. Let X be a cl(E)-valued Aumann Pettis integrable random set.

Let {fn, n ≥ 1} be a sequence in SPeX such that X(ω) = {fn(ω), n ≥ 1}, ∀ω ∈
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Ω. Then for each f ∈ SPeX and ε > 0, there exist a finite partition (Ai),
i = 1, . . . , p of Ω in F and {fn1

, fn2
, . . . , fnp

} ⊂ {fn, n ≥ 1} such that

‖f −
p∑
i=1

fni · χAi‖Pe < ε.

Proof. The proof of this Lemma is contained in the first part of the proof of
Theorem 24 in [16], so the proof can be omitted. �

Remark 3.2. By Lemma 23 in [16] if X1 and X2 are two closed valued and
Aumann Pettis integrable random sets such that

SPeX1
= SPeX2

,

then

X1 = X2 µ a.s.

A non-empty subset of P 1
E(F) is decomposable (with respect to F) if for

every f1, f2 ∈M and A ∈ F , we have

χA · f1 + χΩ\A · f2 ∈M.

Then we have the following Lemma:

Lemma 3.3. Let E be a separable Banach space, and M be a non-empty
closed subset of P 1

E(F). Then there exists a unique cl(E)-valued Aumann Pettis
integrable random set G such that M = SPeG if and only if M is decomposable
with respect to F .

Proof. (⇒) The proof is a modification of the proof of Theorem 3.1 in [19].
Indeed, it is well known that SPeG is decomposable.

(⇐) Since M is non-empty, then there is f0 ∈M such that f0(ω) ∈ E, ∀ω ∈
Ω. Then

SPeX 6= ∅, where X(ω) = E for ω ∈ Ω.

Applying Lemma 23 in [16] there exists a sequence (fi)i∈N of Pettis integrable
functions such that (fi(ω))i∈N is dense in E for every ω ∈ Ω. For each i ∈ N,
let αi = infg∈M (‖‖fi − g‖E ∧ 1‖1). Then for each i, j ≥ 1, there is gi,j in M
such that

|‖‖fi − gi,j‖E ∧ 1‖1 − αi| <
1

j
.

Let define G as

G(ω) = {gi,j(ω), i, j ≥ 1}.
Now we prove that M = SPeG . Let f ∈ SPeG and ε > 0, then from Lemma 3.1

there exist a finite partition (An), n = 1, . . . , p of Ω in F and {g1, g2, . . . , gp} ⊂
{gi,j(ω), i, j ≥ 1} such that

‖f −
p∑

n=1

gn · χAn‖Pe < ε.
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Since
∑p
n=1 gn · χAn

∈ M and M is closed with respect to the Pettis norm,
then f ∈ M . So SPeG ⊂ M . Now we prove that M ⊂ SPeG . By assume the
converse, there is a f ∈ M which does not belong to SPeG . Then there exist
δ > 0 and A ∈ F with µ(A) > 0 such that

inf
i,j

(‖f(ω)− gi,j(ω)‖E ∧ 1) > δ ∀ω ∈ A.

Since for each ω ∈ Ω, f(ω) ∈ {fi(ω), i ≥ 1}. Then we can write

Ω = ∪i{ω, (‖f(ω)− fi(ω)‖E ∧ 1) <
δ

3
},

so there is i0 ≥ 1 such that B = A ∩ {ω, ‖f(ω) − fi0(ω)‖E ∧ 1 < δ
3} has a

positive measure. Define a sequence (gj)j≥1 as

gj = χB · f + χΩ\Bgi0,j .

Since (gj) ⊂M and

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1) ≥ (‖f(ω)− gi0,j(ω)‖E ∧ 1)−(‖f(ω)− fi0(ω)‖E ∧ 1)

>
2δ

3
∀ω ∈ B.

Then we have∫
Ω

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ− αi0

≥
∫

Ω

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ−
∫

Ω

(‖fi0(ω)− gj(ω)‖E ∧ 1)dµ,

and ∫
Ω

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ− αi0

≥
∫
B

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ+

∫
Ω\B

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ

−
∫
B

(‖fi0(ω)− gj(ω)‖E ∧ 1)dµ−
∫

Ω\B
(‖fi0(ω)− gj(ω)‖E ∧ 1)dµ

=

∫
B

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ−
∫
B

(‖fi0(ω)− f(ω)‖E ∧ 1)dµ >
δ

3
µ(B).

Letting j go to the infinity, then we have a contradiction with the fact that the
sequence (

∫
Ω

(‖fi0(ω)− gi0,j(ω)‖E ∧ 1)dµ)j∈N∗ converges to αi0 . Consequently
we have

M = SPeG .

The uniqueness of G follows from Remark 3.2. �

Lemma 3.4. Let X be a cl(E)-valued Aumann Pettis integrable random set.
Then we have

SPeco(X)

‖.‖Pe

= co(SPeX ).
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Proof. It clear that SPeX ⊂ SPeco(X), then co(SPeX ) ⊂ SPeco(X)

‖.‖Pe

. Now to prove

the converse assume that the inclusion is strict, so there is f ∈ SPeco(X)

‖.‖Pe

and

f /∈ co(SPeX ). Then by using the separation theorem there is v ⊗ x′ ∈ (P 1
E)∗ =

L∞ ⊗ E′ such that

δ∗(v ⊗ x′, SPeX ) = δ∗(v ⊗ x′, co(SPeX ))

< (v ⊗ x′, f) =

∫
Ω

v(ω) · 〈x′, f(ω)〉dµ.(3.4.1)

On the other hand since f ∈ SPeco(X)

‖·‖Pe

there is a sequence (fn) in SPeco(X) such

that

lim
n
‖fn − f‖Pe = 0.

This implies that

lim
n
〈x′, fn〉 = 〈x′, f〉 in L1

R.

Hence

lim
n

(v ⊗ x′, fn) = (v ⊗ x′, f).

So by using this and the fact that (v ⊗ x′, fn) ≤ δ∗(v ⊗ x′, SPeco(X)), it follows

that

(v ⊗ x′, f) ≤ δ∗(v ⊗ x′, SPeco(X)).

Then ∫
Ω

v(ω) · 〈x′, f(ω)〉dµ ≤ sup
h∈SPe

co(X)

(v ⊗ x′, h)

= sup
h∈SPe

co(X)

∫
Ω

v(ω) · 〈x′, h(ω)〉dµ

≤
∫

Ω

sup
x∈co(X)(ω)

(v(ω) · 〈x′, x〉)dµ

=

∫
Ω

δ∗(v ⊗ x′(ω), co(X)(ω))dµ

=

∫
Ω

δ∗(v ⊗ x′(ω), X(ω))dµ

= δ∗(v ⊗ x′, SPeX ) = δ∗(v ⊗ x′, co(SPeX )).

This contradicts what is proved in (3.4.1). Consequently we have

SPeco(X)

‖.‖Pe

= co(SPeX ). �

Theorem 3.5. Let X be a cc(E)-valued Aumann Pettis integrable random
set, and B a sub-σ-algebra of F . Assume that for every selection f ∈ SPeX ,
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EB(f) exists. Then there exists a unique (µ a.s.) cc(E)-valued, B-measurable
and Aumann Pettis integrable random set Y such that

SPeY (B)
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Proof. Let us define a set M as

M = {EB(f) : f ∈ SPeX }.

It is clear that M is well defined. As SPeX is nonempty and decomposable, then
also M is a nonempty and decomposable subset in the set of all B-measurable

and Pettis integrable functions. From [16], M
‖.‖Pe

is also decomposable with
respect to B. Then by applying Lemma 3.3 there exists a unique cl(E)-valued
B-measurable and Aumann Pettis integrable random set G such that

SPeG = M
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Now let us define Y as Y (ω) = co(G)(ω) for each ω ∈ Ω. Since SPeG (B) 6= ∅,
from Lemma 23 in [16] there is a sequence (gn)n≥1 in SPeG (B) such that

G(ω) = cl{gn(ω), n ≥ 1}, ω ∈ Ω.

Define

U = {g, g =

m∑
i=1

αi.gi : αi rational ≥ 0,

m∑
i=1

αi = 1,m ≥ 1}.

Then U is a countable set of B-measurable functions and for each ω ∈ Ω,
Y (ω) = cl{g(ω), g ∈ U}. Hence by Theorem 1.0 in Hiai and Umegaki [19],
Y is a cc(E)-valued and B-measurable multifunction. Also it is not difficult
to see that Y is Aumann Pettis integrable. Again since G is Aumann-Pettis
integrable, so by applying Lemma 3.4 we get

SPeY (B)
‖.‖Pe

= co(SPeG (B)).

Combining this with the properties of closed convex hull and the convexity of
the set {EB(f) : f ∈ SPeX }, it follows that

SPeY (B)
‖.‖Pe

= co(SPeG (B)) = co(SPeG (B)
‖.‖Pe

)

= co({EB(f) : f ∈ SPeX }
‖.‖Pe

) = co({EB(f) : f ∈ SPeX })

= co({EB(f) : f ∈ SPeX })
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Finally we have

SPeY (B)
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

. �

Before starting the main theorem noting that:
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Remark 3.6. If X is a cc(E)-valued Pettis integrable random set and B a sub-
σ-algebra of F . Then the following properties are equivalent:

1) EB(|X|) < +∞ µ a.s.
2) There exists a partition (Bm)m≥1 of Ω in B such that for each m,∫

Bm
|X|dµ < +∞.

It is obvious to see that one of both properties implies that X is (µ a.s.) with
bounded values.

Definition 3.7. A random set X : Ω → cl(E) is said D-countably supported
if one can find a countable dense subset D in B′ such that

X(ω) =
⋂
y∈D
{x, 〈y, x〉 ≤ δ∗(y,X(ω))} ∀ω ∈ Ω.

Remark 3.8. From [12] a D-countably supported random set may be with
unbounded values, and from the same author if X is of bounded values and E′

is separable, then it is D-countably supported. Then this condition is weaker
than condition EB(|X|) < +∞ µ a.s. which is based in the works of authors
[1, 2, 13,28].

Theorem 3.9. Assume that (Ω,F , µ) is a probability measure space, and E′

is separable. Let B be a sub-σ-algebra of F and X a cc(E)-valued scalarly
integrable random set such that

(i) SPeX 6= ∅ and EB(f) exists for each f ∈ SPeX ,
(ii) X is D-countably supported (D is a countable dense subset in B′).
Then there exists a unique (µ a.s.) cc(E)-valued, B-measurable and Aumann

Pettis integrable random set Y denoted by Y = EB(X) such that

SPe
EB(X)

(B)
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Consequently Y is Pettis integrable and we have∫
A

Xdµ =

∫
A

Y dµ =

∫
A

EB(X)dµ ∀A ∈ B.

Proof. By applying Theorem 3.5 there exists a unique (µ a.s.) cc(E)-valued,
B-measurable and Aumann Pettis integrable random set Y denoted by EB(X)
such that

SPe
EB(X)

(B)
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Now we prove the Pettis integrability of X and Y = EB(X). The Pettis
integrability of X is an immediate consequence of Theorem 3.9 and Corollary
3.10 in Amri-Hess [12]. Now since from condition (i) SPeX 6= ∅, then also
SPeEB(X) 6= ∅, then there is a Pettis integrable selection g in SPeEB(X). The

Pettis integrability of g implies that the set {(〈x′, g〉)−, x′ ∈ B′} is uniformly
integrable in L1

R, hence it is bounded. In turn, it implies that∫
Ω

(δ∗(x′, Y ))−dµ ≤
∫

Ω

(〈x′, g〉)−dµ < +∞.
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Also by applying Theorem 3.9 and Corollary 3.10 in Amri-Hess [12] we get the
Pettis integrability of Y = EB(X). Now we prove the second part of theorem,
first observe that for all A ∈ B,

δ∗(x′,

∫
A

Xdµ) = δ∗(x′, {
∫
A

fdµ : f ∈ SPeX })

= δ∗(x′, {
∫
A

EB(f)dµ : f ∈ SPeX })

≤ δ∗(x′, {
∫
A

gdµ : g ∈ SPeEB(X)})

= δ∗(x′,

∫
A

EB(X)dµ).

Hence

(3.9.1)

∫
A

Xdµ ⊂
∫
A

EB(X)dµ.

To prove the reverse inclusion. Indeed, for each A ∈ B, let YA =
∫
A
gdµ ∈∫

A
EB(X)dµ for some g ∈ SPeEB(X)(B). Since

g ∈ SPeEB(X)(B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Then there is a sequence (fn)n∈N ⊂ SPeX such that EB(fn) converges in the
Pettis norm to g. Now the fact that the Pettis norm is equivalent to norm
defined by supA∈F ‖

∫
A

(·)dµ‖ (see Musial [21], p. 198). It follows that

lim
n→+∞

sup
A∈B
‖
∫
A

EB(fn)dµ−
∫
A

gdµ‖ = 0.

Hence

(3.9.2) lim
n→+∞

∫
A

fndµ =

∫
A

gdµ ∀A ∈ B.

Since (fn)n∈N ⊂ SPeX and X is D-countably supported, then Proposition 4.1(a)
in [12] implies that

(

∫
A

fndµ)n∈N ⊂
∫
A

Xdµ ∀A ∈ B.

This with (3.9.2) implies

yA =

∫
A

gdµ ∈
∫
A

Xdµ ∀A ∈ B.

Combining this with (3.9.1) we get∫
A

Xdµ =

∫
A

Y dµ =

∫
A

EB(X)dµ ∀A ∈ B.
�
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If the space P 1
E(F) is separable the result comes directly from Theorem 25

in [16] and Lemma 3.4 respectively, without using Lemma 3.3 and Theorem
3.5.

Corollary 3.10. Assume that (Ω,F , µ) is a probability measure space, E′ and
P 1
E(F) are separable. Let B be a sub-σ-algebra of F and X a cc(E)-valued

scalarly integrable random set such that
(i) SPeX 6= ∅ and EB(f) exists for each f ∈ SPeX ,
(ii) X is D-countably supported (D is a countable dense subset in B′).
Then there exists a unique (µ a.s.) cc(E)-valued, B-measurable and Aumann

Pettis integrable random set Y denoted by Y = EB(X) such that

SPe
EB(X)

(B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Consequently Y is Pettis integrable and we have∫
A

Xdµ =

∫
A

Y dµ =

∫
A

EB(X)dµ ∀A ∈ B.

Proof. Let us define a set M as

M = {EB(f) : f ∈ SPeX }.

From the linearity of EB(·) and condition (i), M is well defined and non-empty
decomposable subset in the set of B-measurable and Pettis integrable functions.

From [16] also M
‖.‖Pe

is decomposable with respect to B. Then by applying
Theorem 25 in [16] there exists a unique (µ a.s.) cl(E)-valued, B-measurable
and Aumann Pettis integrable random set G such that

SPeG (B)
‖.‖Pe

= {EB(f) : f ∈ SPeX }
‖.‖Pe

.

The rest of the proof is the same as of the proof of Lemma 3.4 and Theorem
3.9. �

Remark 3.11. If the random set X is ccb(E)-valued and the space E′ is strongly
separable. From Amri-Hess [12, pp. 346–347] X is countably supported, then
condition (ii) in Theorem 3.9 can be omitted.

The following theorem is an extension of Theorem 5.5 in Hiai and Umegaki
[19]. Also the theorem gives a necessary and sufficient condition that the mul-
tivalued Pettis conditional expectation can be represented in the form as a
sequence of real valued conditional expectations. Before starting our theorem
remark that if X is cc(E)-valued and Aumann Pettis integrable, then from
Corollary 3.10 in [12] we have

CA(X) = w −
∫
A

Xdµ =

∫
A

Xdµ ∀A ∈ F .
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Theorem 3.12. Let B be a sub-σ-algebra of F and X a cc(E)-valued random
set satisfies all conditions in Theorem 3.9. If for every A ∈ B, IA(EB(X)) is
closed. Then the following properties are equivalent:

1) EB(X)(ω) =
⋂
n≥1{x, 〈x′n, x〉 ≤ EB(δ∗(x′n, X)(ω))} for µ a.s. ω ∈ Ω.

2) SPeEB(X)(B) is closed with respect to the Pettis norm, i.e.,

SPeEB(X)(B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Proof. We prove that 1) implies 2). By using the existence of EB(δ∗(x′, X))
and EB(X), and the Pettis integrability of X and EB(X) we get for all x′ ∈ E′,∫

A

δ∗(x′, EB(X))dµ = δ∗(x′,

∫
A

EB(X)dµ) = δ∗(x′,

∫
A

Xdµ)

=

∫
A

δ∗(x′, X)dµ =

∫
A

EB(δ∗(x′, X))dµ ∀A ∈ B.

Then from the uniqueness of conditional expectation for every x′ ∈ E′, we have

EB(δ∗(x′, X)) = δ∗(x′, EB(X)) µ a.s.

Let D = {x′n, n ∈ N∗} be a countable strong dense sequence in B′, then for
every n ∈ N∗, there is a null set Nn such that

EB(δ∗(x′n, X)(ω)) = δ∗(x′n, E
B(X)(ω)) ∀ω ∈ Ω \Nn.

Set N = ∪nNn, then for all n ∈ N∗, we have

EB(δ∗(x′n, X)(ω)) = δ∗(x′n, E
B(X)(ω)) ∀ω ∈ Ω \N.

This with condition 1) implies that

EB(X)(ω) =
⋂
n≥1

{x, 〈x′n, x〉 ≤ δ∗(x′n, EB(X)(ω))} µ a.s.

Hence EB(X) is µ a.s. D-countably supported. Now applying Proposition 4.2
in [12] it follows that SPeEB(X)(B) is closed with respect to the Pettis norm. So

SPeEB(X)(B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

.

Now we prove that 2) implies 1). Set

Y (ω) =
⋂
n≥1

{x, 〈x′n, x〉 ≤ EB(δ∗(x′n, X)(ω))} µ a.s.

It is clear that Y is B-measurable. Then to prove this implication it suffice to
prove that

SPeY (B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

.

If f ∈ SPeX , then

〈x′n, EB(f)〉 = EB(〈x′n, f〉) ≤ EB(δ∗(x′n, X)(ω)) = δ∗(x′n, E
B(X)(ω)) µ a.s.
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so EB(f) ∈ SPeY (B). Conversely, let g ∈ SPeY (B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

,
then there is a sequence (fn)n∈N ⊂ SPeX such that

lim
n
‖EB(fn)− g‖Pe = 0.

Hence

lim
n

∫
A

fndµ =

∫
A

gdµ ∀A ∈ B.

Since (
∫
A
fndµ)n∈N ⊂

∫
A
Xdµ, ∀A ∈ B and X is D-countably supported, then∫

A

gdµ ∈
∫
A

Xdµ =

∫
A

EB(X)dµ =

∫
A

EB(X)dµ ∀A ∈ B.

So this implies that g ∈ SPeEB(X)(B). Thus the reverse implication is proved. �

If the random sets X are cwk(E)-valued and integrably bounded, Klei-
Assani [4] proved that EB(X) exists, furthermore is cwk(E)-valued and satis-
fying

S1
EB(X)(B) = {EB(f) : f ∈ S1

X}.
Here we present an extension of this result to the cwk(E)-valued Pettis inte-
grable random sets.

Lemma 3.13. Let E′ be separable, B a sub-σ-algebra of F and X a cwk(E)-
valued scalarly and Aumann Pettis integrable random set such that EB(X)
exists and |EB(X)| < +∞. Then

EB(X) ∈ cwk(E) µ a.s.

Proof. From Theorem 5.4 in [12], we have for every A ∈ B,

M(A) =

∫
A

Xdµ = {
∫
A

fdµ, f ∈ SPeX } ∈ cwk(E).

By using the Pettis integrability of X we have for every x′ ∈ E′,

δ∗(x′,M(A)) =

∫
A

δ∗(x′, X)dµ.

Then A→ δ∗(x′,M(A)) is a signed measure who is absolutely continuous with
respect to µ. Hence M(·) is a set valued measure with values in cwk(E) which
is also absolutely continuous with respect to µ. Then from Theorem 4.4 in [27]
there is a cwk(E)-valued and weakly integrable random set G such that

M(A) =

∫
A

Gdµ.

Thus ∫
A

Gdµ =

∫
A

EB(X)dµ ∀A ∈ B.

This shows that for all x′ ∈ E′, we have∫
A

δ∗(x′, G)dµ =

∫
A

δ∗(x′, EB(X))dµ ∀A ∈ B.
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Then

δ∗(x′, G(ω)) = δ∗(x′, EB(X)(ω)) ∀ω ∈ Ω \Nx′ ,
where µ(Nx′) = 0. Let (x′n)n∈N be a dense sequence in E′ and N = ∪nNx′n
(µ(N) = 0). Let x′ ∈ E′ and (xk)k∈N a subsequence of (x′n)n∈N such that
x′k → x′ strongly. Then for every ω ∈ Ω \N , we have

|δ∗(x′, EB(X)(ω))− δ∗(x′, G(ω))|
≤ |δ∗(x′, EB(X)(ω))− δ∗(x′k, EB(X)(ω))|+ |δ∗(x′k, G(ω))− δ∗(x′, G(ω))|
≤ ‖x′k − x′‖(|G(ω)|+ |EB(X)(ω)|)→ 0, k → +∞.

So for every ω ∈ Ω \N , µ(N) = 0 we have

δ∗(x′, EB(X)(ω)) = δ∗(x′, G(ω)).

Consequently

EB(X)) = G ∈ cwk(E) µ a.s. �

Proposition 3.14. Assume that (Ω,F , µ) is a probability measure space, and
E′ is separable. Let B be a sub-σ-algebra of F and X is a cwk(E)-valued
scalarly integrable random set such that

(i) SPeX 6= ∅ and EB(|X|) < +∞ µa.s.
Then there exists a unique (µ a.s.) cwk(E)-valued, B-measurable and Au-

mann Pettis integrable random set Y denoted by EB(X) such that

SPeY (B) = {EB(f) : f ∈ SPeX }.

Consequently Y is Pettis integrable and we have∫
A

Xdµ =

∫
A

EB(X)dµ ∀A ∈ B.

Proof. Since EB(|X|) < +∞ µa.s., then also EB(|f |) < +∞ µa.s. ∀f ∈
SPeX . This and Theorem 3.6 in [13] implies that EB(f) exists. Since X is
cwk(E)-valued and E′ is separable, thenX isD-countably supported. Hence all
conditions of Theorem 3.9 are satisfied, so there exists a unique (µ a.s.) cc(E)-
valued, B-measurable and Aumann Pettis integrable random set Y denoted by
EB(X) such that

SPe
EB(X)

(B) = {EB(f) : f ∈ SPeX }
‖.‖Pe

,

and ∫
A

Xdµ =

∫
A

EB(X)dµ ∀A ∈ B.

Now we prove that the set {EB(f) : f ∈ SPeX } is ‖ · ‖Pe-closed. Indeed, let
(EB(fn))n∈N a sequence in {EB(f) : f ∈ SPeX } such that EB(fn) converges in
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the Pettis norm to some g, since the Pettis norm is equivalent to norm defined
by supA∈F ‖

∫
A

(·)dµ‖ (see Musial [21, p. 198]). It follows that

lim
n→+∞

sup
A∈B
‖
∫
A

EB(fn)dµ−
∫
A

gdµ‖ = 0.

Thus

lim
n→+∞

sup
A∈B
‖
∫
A

fndµ−
∫
A

gdµ‖ = 0.

Hence

lim
n→+∞

∫
A

fndµ =

∫
A

gdµ ∀A ∈ B.(3.14.1)

Since X is cwk(E)-valued, by Theorem 3.7 in [12] it is Pettis integrable. So by

Theorem 5.4 in [12], the set {〈x′, f〉, x′ ∈ B′, f ∈ SPe

X } is uniformly integrable.

Hence from Theorem 3.6 in [7], SPe

X is relatively sequentially compact with

respect to the weak topology of P 1
E(Ω,F , µ). Since from [16] SPe

X is closed,
then it is sequentially weakly compact. Combining this property with the fact
that (fn)n∈N ⊂ SPe

X , there is a subsequence (fϕ(n))n∈N of (fn)n∈N and f ∈ SPe

X

such that for every x′ ∈ E′, we have

lim
n→+∞

〈x′,
∫
A

fϕ(n)dµ〉 = 〈x′,
∫
A

fdµ〉 ∀A ∈ F .

In particulary

lim
n→+∞

〈x′,
∫
A

fϕ(n)dµ〉 = 〈x′,
∫
A

fdµ〉 ∀A ∈ B.

Combining this with (3.14.1) we get for every x′ ∈ E′,

〈x′,
∫
A

fdµ〉 = 〈x′,
∫
A

gdµ〉 ∀A ∈ B.

Consequently ∫
A

fdµ =

∫
A

gdµ ∀A ∈ B.

From this and the uniqueness of conditional expectation we get g = EB(f).
Consequently the set

{EB(f) : f ∈ SPeX },
is closed with respect to the Pettis norm, hence

SPe
EB(X)

(B) = {EB(f) : f ∈ SPeX } = EB(SPeX ).

Now since from condition (ii) and Lemma 3.13, EB(X) is cwk(E)-valued, then
combining this with the separability of E′ it follows from ([12, p. 346]) that
EB(X) is D-countably supported. So by applying Proposition 4.2 in [12],
SPeEB(X)(B) is closed with respect to the Pettis norm, then

SPeEB(X)(B) = {EB(f) : f ∈ SPeX } = EB(SPeX ).
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Now if we go back to the Proposition 5.2 and Theorem 5.4 in [12], respectively
we get ∫

A

Xdµ =

∫
A

EB(X)dµ ∀A ∈ B.
�

4. Properties of EB(·) and Lévy’s convergence theorem

The Lévy’s theorem is one of the most useful convergence results in stochastic
analysis theory. The original theorem introduced by Lévy and is: if (Fn)n∈N∗
is an increasing sequence of sub-σ-algebra of F and f a real or vector valued
integrable random variable, then one has

lim
n→+∞

EFn(f) = EF (f) = f,

where F = σ(∪nFn). This theorem has been extended to the multivalued
random sets whose values are convex and weakly compact (resp. closed convex
and bounded). Let us mention the works of [9, 10, 14, 24, 26] in the Bochner
integrable case and the works of [1, 2] in the Pettis integrable case. In this
section we present an extension of this theorem: One for closed convex and
unbounded Pettis integrable random sets dealing with the Slice topology, and
the other for closed convex and bounded Pettis integrable random sets dealing
with the linear topology.

Before starting those results we begin by the following Jensen’s inequalities
for the unbounded Pettis integrable random sets.

Lemma 4.1. Let X be a cc(E)-valued random set satisfying all conditions of
Theorem 3.9. Then we have the following properties:

(1) ∀x ∈ E, d(x,EB(X)) ≤ EB(d(x,X)) µ a.s.,
(2) |EB(X)| ≤ EB(|X|) µ a.s.

Proof. To prove (1). Indeed, since X is measurable, then the mapping: ω 7−→
d(x,X(ω)) is measurable for any x ∈ E (see [6, §3, p. 67]). Now for a given
x ∈ E and ε > 0, let us define a positive random variable r as

r(ω) = d(x,X(ω)) + ε, ω ∈ Ω,

and a multifunction G as

G(ω) = X(ω) ∩B(x, r(ω)), ω ∈ Ω.

It is clear that G(ω) is with non-empty closed values in a complete space E and
from Proposition 3.3.3 in Hess [17], G is a measurable multifunction. Hence by
applying Theorem III.6 in [6] there is a measurable selection g of G such that

(4.4.1) ‖x− g(ω)‖ ≤ d(x,X(ω)) + ε.

Since g is also a selection of X, then the scalar integrability of X implies that
g is scalarly integrable. Now by taking the conditional expectation in (4.4.1)
we have

EB(‖x− g‖) ≤ EB(d(x,X)) + ε µ a.s.
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Furthermore, from Lemma 3.3 in [2], we get

‖x− EB(g)‖ = ‖EB(x− g)‖ ≤ EB(‖x− g‖) µ a.s

≤ EB(d(x,X)) + ε.

Thus the property EB(g) ∈ EB(X) implies

d(x,EB(X)) ≤ EB(d(x,X)) + ε µ a.s.,

where ε is arbitrary. Then for all x ∈ E,

d(x,EB(X)) ≤ EB(d(x,X)) µ a.s.

Finally to prove (2), let D′ be a countable dense subset in B′ with respect to
the norm topology in E′. Then we have

EB|X| = EB( sup
x′∈D′

(δ∗(x′, X))

≥ EB(δ∗(x′, X)) = δ∗(x′, EB(X)) µ a.s. ∀ x′ ∈ D′.
Thus

EB|X| ≥ sup
x′∈D′

δ∗(x′, EB(X)) = |EB(X)| µ a.s. �

A sequence of random sets (Xn) is called a martingale (resp. supermartin-
gale, submartingale) if for all m < n, we have

EFm(Xn) = Xm (resp. EFm(Xn) ⊂ Xm, E
Fm(Xn) ⊃ Xm),

where (Fn)n≥1 be an increasing sequence of elements of F .

Theorem 4.2. Let X be a cc(E)-valued random set satisfying all conditions
of Theorem 3.9, and (Fn)n≥1 be an increasing sequence of elements of F such
that F = σ(

⋃
n≥1 Fn). Assume that:

1) EFn(X) is majorized by a w-ball compact set R,
2) There is a countable partition (Bm)m∈N of Ω in F1 such that for each

m ∈ N, ∫
Bm

d(0, X)dµ < +∞.

Then
TSlice − lim

n
EFn(X) = X µ a.s.

Proof. For each m ∈ N∗, let us define a positive integrable random variable
as rm(ω) = d(0, (X/Bm)(ω)) +m and a closed convex valued integrable super-
martingale as

Xm
n (ω) = EFn(X) ∩B(0, rm(ω)), ω ∈ Ω,

where X/Bm is the restriction of X to each Bm. Since for each n and m in
N∗ we have X/Bm = EFn(X/Bm), it is clear that Xm

n (ω) 6= ∅. Then from
conditions 1) and 2) and Theorem 3.1 in [20] for each integer m ∈ N∗, there is
a random set Xm

+∞ with values in Rw such that

TSlice − lim
n
Xm
n = Xm

+∞ µ a.s.
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Thus
TSlice − lim

n
EFn(X) ∩B(0, rm) = Xm

+∞ µ a.s.

Now by applying Lemma 5.7 in [20] we get

TSlice − lim
n
EFn(X)(ω) = X+∞(ω) ∀ω ∈ Ω \N,

where

X+∞(ω) = ∪mXm
+∞(ω) if ω ∈ Ω \N,

X+∞(ω) = {0} if ω ∈ N.
Also for each m ∈ N∗, we have

TSlice − lim
n
EFn(X/Bm)(ω) = X+∞/Bm µ a.s.

Hence for each m ∈ N∗ and every x ∈ E,

d(x,X+∞/Bm) = lim
n
d(x,EFn(X/Bm)).

According to condition 1) in Lemma 4.1 we have for each m ∈ N∗ and for
every x ∈ E,

d(x,X+∞/Bm) = lim
n
d(x,EFn(X/Bm))

≤ lim
n
EFn(d(x,X/Bm))

= (d(x,X/Bm)),

and this shows that for each m ∈ N∗, X/Bm ⊂ X+∞/Bm, so X ⊂ X+∞.
Now we prove the reverse inclusion. Since

TSlice − lim
n
EFn(X) = X+∞ µ a.s.

Then also we have

TMosco − lim
n
EFn(X) = X+∞ µ a.s.,

hence
X+∞ = w − lsEFn(X) µ a.s.

Let D = {x′k, k ∈ N} be a dense sequence in B′ with respect to strong topology
in E′. Since

δ∗(x′k, E
Fn(X)) = EFn(δ∗(x′k, X)) µ a.s.

for every k ∈ N and n ∈ N∗. By the Lévy’s theorem for L1
R we have

lim
n
EFn(δ∗(x′k, X)) = δ∗(x′k, E

Fn(X)) = δ∗(x′k, X) µ a.s.

Let ω ∈ Ω such that the previous equalities are satisfied. Let f ∈ w −
lsEFn(X)(ω), so there is fj ∈ EFnj (X)(ω), such that f = w − limj fj . Hence

〈x′k, f〉 = lim
j
〈x′k, fj〉

≤ lim sup
j

δ∗(x′k, E
Fnj (X)(ω))
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= lim sup
j

EFnj (δ∗(x′k, X(ω)))

≤ lim
j
EFnj (δ∗(x′k, X(ω))) = (x′k, X(ω)).

Since X is D-countably supported (X satisfying all conditions of Theorem 3.9),
then from the previous formula we conclude that f ∈ X(ω), hence X+∞ ⊂ X.

Consequently

TSlice − lim
n
EFn(X) = X. �

If the random sets are of bounded values, the conditions 1) and 2) are omitted
and we get a convergence with the linear topology.

Proposition 4.3. Let X be a cc(E)-valued random set satisfying all conditions
of Theorem 3.9. Let (Fn)n≥1 be an increasing sequence of sub-σ-algebras of F
such that F = σ(

⋃
n≥1 Fn). Assume that supnE

Fn(|X|) < +∞ µa.s.. Then

TB − lim
n
EFn(X) = X µa.s.

Proof. SinceX satisfying all conditions of Theorem 3.9, then for every n ≥ 1, by
using the existence of EFn(δ∗(x′, X)) and EFn(X), and the Pettis integrability
of X and EFn(X) we get for all x′ ∈ E′,∫

A

δ∗(x′, EFn(X))dµ = δ∗(x′,

∫
A

EFn(X)dµ) = δ∗(x′,

∫
A

Xdµ)

=

∫
A

δ∗(x′, X)dµ =

∫
A

EFn(δ∗(x′, X))dµ ∀A ∈ Fn.

Then from the uniqueness of conditional expectation for every n ≥ 1 and
x′ ∈ E′, we have

(4.3.1) EFn(δ∗(x′, X)) = δ∗(x′, EFn(X)) µ a.s.

Then by applying the classical Lévy’s martingale convergence theorem and
(4.3.1) it follows that

lim
n→+∞

δ∗(x′, EFn(X))(ω) = lim
n→+∞

EFn(δ∗(x′, X))(ω) = δ∗(x′, X)(ω)

for all ω ∈ Ω \Nx′ , µ(Nx′) = 0. Let D′ = {x′n, n ∈ N∗} be a countable dense
sequence in E′ for the strong topology. Then we have

lim
m→+∞

EFm(δ∗(x′n, X))(ω) = δ∗(x′n, X)(ω) ∀ω ∈ Ω \Nx′n .

Let us define the set N = ∪n≥1(Nx′n) (µ(N) = 0), then for all ω ∈ Ω \N and
every k ≥ 1, we have

(4.3.2) lim
m→+∞

EFm(δ∗(x′k, X))(ω) = δ∗(x′k, X)(ω).

Then for ε > 0 given , k ≥ 1, and ω ∈ Ω\N , there is mω,k such that ∀m ≥ mω,k,
we have

| EFm(δ∗(x′k, X))(ω)− δ∗(x′k, X)(ω) |< ε.
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Now let x′ be a fixed point in E′, and let ε > 0, then there exists a sequence
(x′k)k≥1 in D′ such that for large k ≥ k0, we have ‖x′k−x′‖ < ε. Then we have

|EFm(δ∗(x′, X))(ω)− δ∗(x′, X)(ω)|
≤ |EFm(δ∗(x′, X))(ω)− EFm(δ∗(x′k, X))(ω)|

+ |EFm(δ∗(x′k, X))(ω)− δ∗(x′k, X)(ω)|+ |δ∗(x′k, X)(ω)− δ∗(x′, X)(ω)|
≤ EFm |(δ∗(x′, X)(ω)− δ∗(x′k, X)(ω))|+ |EFm(δ∗(x′k, X))(ω)− δ∗(x′k, X)(ω)|

+ |δ∗(x′k − x′, X)(ω) + δ∗(x′ − x′k, X)(ω)|
≤ 2 · EFm(|X|)(ω)‖x′k − x′‖+ |EFm(δ∗(x′k, X))(ω)− δ∗(x′k, X)(ω)|

+ 2 · |X|(ω)‖x′k − x′‖
≤ (2 · EFm(|X|)(ω) + 2 · |X|(ω) + 1) · ε.

Consequently if k ≥ k0 and m ≥ mω,k we have

(4.3.3) lim
m
δ∗(x′, EFm(X)(ω)) = δ∗(x′, X)(ω) ∀ω ∈ Ω \N, ∀x′ ∈ E′.

Now we prove that for every x ∈ E,

lim
n
d(x,EFn(X)) = d(x,X) µ a.s.

Indeed, let x ∈ E, x′ ∈ B′, and ω ∈ Ω, then we can write

(4.3.4) d(x,EFn(X)(ω)) ≥ (〈x′, x〉 − δ∗(x′, EFn(X)(ω))).

Now applying (4.3.3) and (4.3.4) we get

lim inf
n

d(x,EFn(X)) ≥ (〈x′, x〉 − δ∗(x′, X)) µ a.s.

and by taking the supremum on B′ we have

(4.3.5) lim inf
n

d(x,EFn(X)) ≥ d(x,X) µ a.s.

Next we define Am = {m−1 ≤ EF1(|X|) < m}. It is clear that for each m ≥ 1,
for every x ∈ E, d(x,X) · χAm

∈ L1
R. Then, from Lemma 3.4(2), the classical

Lévy’s theorem for L1
R we have

lim sup
n

d(x,EFn(X)) · χAm ≤ lim sup
n

EFn(d(x,X)) · χAm

= lim sup
n

EFn(d(x,X) · χAm
)

= d(x,X) · χAm
µ a.s.

The fact that (Am) is a partition of Ω in F1, it is clear that for every x ∈ E,

lim sup
n

d(x,EFn(X)) ≤ d(x,X) µ a.s.

Combining this with (4.3.5) we get for every x ∈ E,

lim
n
d(x,EFn(X)) = d(x,X) µ a.s.
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The µ a.s. convergence follows from the fact that

lim sup
n

d(x,EFn(X)) ≥ lim inf
n

d(x,EFn(X)).

Consequently we have,

TB − lim
n
EFn(X) = X µ a.s. �
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