DOI QR코드

DOI QR Code

단층핵의 물리적 특성과 마찰 특성의 상관관계 분석

Physical Properties and Friction Characteristics of Fault Cores in South Korea

  • 문성우 (충북대학교 지구환경과학과) ;
  • 윤현석 (충북대학교 지구환경과학과) ;
  • 서용석 (충북대학교 지구환경과학과)
  • Moon, Seong-Woo (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Yun, Hyun-Seok (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Seo, Yong-Seok (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 투고 : 2020.01.20
  • 심사 : 2020.02.12
  • 발행 : 2020.02.28

초록

본 연구에서는 지반공학 및 지질공학적 측면에서 단층핵의 거동을 이해하기 위해 화강암, 퇴적암 및 화산암 단층대에서 채취된 단층핵 시료를 대상으로 물리적 특성(각력 및 점토함량, 단위중량, 공극률, 함수비)과 마찰 특성(내부마찰각, 점착력)의 관계를 분석하였다. 실내시험으로부터 산정된 물리적 특성을 분석한 결과, 단층핵 내 각력은 단위중량과 양(+)의 상관관계를 가지고, 점토함량, 공극률 및 함수비와는 음(-)의 상관관계를 가진다. 직접전단시험으로부터 산정된 내부 마찰각과 점착력에 대한 사분위수 범위(IQR)는 각각 16.7-38.1°, 2.5-25.3 kPa로 나타났다. 또한, 단층핵의 마찰특성에 미치는 물리적 특성의 영향을 분석한 결과, 마찰각은 모든 암종에서 각각 각력함량 및 단위중량과 양(+)의 상관관계를 가지고, 점토함량, 공극률 및 함수비와 음(-)의 상관관계를 보인다. 대조적으로, 단층핵의 점착력은 각력함량 및 단위중량과 음(-)의 상관관계를 가지고, 점토함량, 공극률 및 함수비와 양(+)의 상관관계를 보인다.

To understand behavior of fault cores in the field of geotechnical and geological engineering, we present an investigation of the physical properties (breccia and clay contents, unit weight, porosity, and water content) and friction characteristics (internal friction angle and cohesion) of fault cores, in granitic, sedimentary, and volcanic rocks in South Korea. The breccia contents in the fault cores are positively correlated with unit weight and negatively correlated with clay content, porosity, and water content. The inter-quartile ranges of internal friction angles and cohesion calculated from direct shear tests are 16.7-38.1° and 2.5-25.3 kPa, respectively. The influence of physical properties on the friction characteristics of the fault cores was analyzed and showed that in all three rock types the internal friction angles are positively correlated with breccia content and unit weight, and negatively correlated with clay content, porosity, and water content. In contrast, the cohesions of the fault cores are negatively correlated with breccia content and unit weight, and positively correlated with clay content, porosity, and water content.

키워드

참고문헌

  1. Adunoye, G.O. (2014) Fines content and angle of internal friction of a lateritic soil: an experimental study. American Journal of Engineering Research, v.3, p.16-21.
  2. An, L.J. and Sammis, C.G. (1994) Particle size distribution of cataclastic fault materials from southern California: A 3-D study. Pure and Applied Geophysics, v.143, p.203-227. https://doi.org/10.1007/BF00874329
  3. ASTM D1140-17 (2017) Standard test methods for determining the amount of material finer than 75-${\mu}m$ (No. 200) sieve in soils by washing. West Conshohocken, PA, 2017, DOI: 10.1520/D1140-17.
  4. ASTM D2216-10 (2010) Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International, West Conshohocken, PA, 2010, DOI:10.1520/D2216-10.
  5. ASTM D2487-17 (2017) Practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, 2017, DOI: 10.1520/D2487-17.
  6. ASTM D3080-98 (1998) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA, 1998, DOI: 10.1520/D3080-98.
  7. ASTM D422-63 (2007) Standard test method for particlesize analysis of soils. ASTM International, West Conshohocken, PA, 2007, DOI: 10.1520/D0422-63R07E02.
  8. ASTM D854-10 (2010) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, 2010, DOI:10.1520/D0854-10.
  9. Bieniawski, Z.T. (1993) Classification of rock masses for engineering: The RMR system and future trend. In: Hudson, J. A. (Eds.), Comprehensive Rock Engineering, New York, Pergamon Press, p.553-574.
  10. Bjerrum, L., Kringstad, S. and Kummeneje, O. (1961) The shear strength of a fine sand. Proceeding of the 5th International Conference on Soil Mechanics and Foundation Engineering in London, v. 1, pp. 29-37.
  11. Blanpied, M.L., Lockner, D.A. and Byerlle, J.D. (1992) An earthquake mechanism based on rapid sealing of faults, Nature, v.358, p.574-576. https://doi.org/10.1038/358574a0
  12. Blenkinsop, T.G. (1991) Cataclasis and processes of particle size reduction. Pure and Applied Geophysics, v.136, p.59-86. https://doi.org/10.1007/BF00878888
  13. Caine, J.S., Evans, J.P. and Forster, C.B. (1996) Fault zone architecture and permeability structure. Geology, v.24, p.1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
  14. Carpenter, B.M., Saffer, D.M. and Marone, C. (2012) Frictional properties and sliding stability of the San Andreas fault from deep drill core. Geology, v.40, p.759-762. https://doi.org/10.1130/G33007.1
  15. Chester, F.M. and Logan, J.M. (1986) Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics, v.124, p.79-106. https://doi.org/10.1007/BF00875720
  16. Clark, C. and James, P. (2003) Hydrothermal brecciation due to fluid pressure fluctuations: examples from the Olary Domain. South Australia, Tectonophysics, v.366, p.187-206. https://doi.org/10.1016/S0040-1951(03)00095-7
  17. Edil, T.B. and Benson, C.H. (2007) Determination of shear strength values for granular backfill material used by the wisconsin department of transportation. Wisconsin Highway Research Program, #0092-05-08, p.149.
  18. Ersoy, H., Karsli, M.B., Cellek, S., Kul, B., Baykan, I. and Parson, R.L. (2013) Estimation of the soil strength parameters in Tertiary volcanic regolith (NE Turkey) using analytical hierarchy process. Journal of Earth System Science, v.122, p.1545-1555. https://doi.org/10.1007/s12040-013-0366-z
  19. Faulkner, D.R., Lewis, A.C. and Rutter, E.H. (2003) On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, v.367, p.235-251. https://doi.org/10.1016/S0040-1951(03)00134-3
  20. Gudmundsson, A. (2004) Effects of Yong's modulus on fault displacement. Comptes Rendus Geoscience, v.336, p.85-92. https://doi.org/10.1016/j.crte.2003.09.018
  21. Gutierrez, M. and Muftah, A. (2011) The effects of rolling resistance on the stress-strain and strain localization behavior of granular materials due to simple shear loading conditions. II International Conference on Particle based Methods Fundamentals and Applications, p.12.
  22. Haines, S,H., Kaproth, B., Marone, C., Saffer, D. and van der Pluijm, B. (2013) Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, v.51, p.206-225. https://doi.org/10.1016/j.jsg.2013.01.002
  23. Haines, W.B. (1925) Studies in the physical properties of soils, II. A note on the cohesion developed by capillary forces in an ideal soil. The Journal of Agricultural Science - Cambridge -, v.15, p.529-535. https://doi.org/10.1017/S0021859600082460
  24. Heilbronner, R. and Keulen, N. (2006) Grain size and grain shape analysis of fault rocks. Tectonophysics, v.427, p.199-216. https://doi.org/10.1016/j.tecto.2006.05.020
  25. Henderson, I.H.C., Ganerod, G.V. and Braathen, A. (2010) The relationship between particle characteristics and frictional strength in basal fault breccias: Implications for fault-rock evolution and rockslide susceptibility. Tectonophysics, v.486, p.132-149. https://doi.org/10.1016/j.tecto.2010.02.002
  26. Heynekamp, M.R., Goodwin, L.B., Mozley, P.S. and Haneberg, W.C. (1999) Controls on fault-zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: implications for fault zone permeability and fluid flow. In: Haneberg, W.C., Mozley, P.S., Moore, J.C. and Goodwin, L.B. (Eds.), Faults and Subsurface Fluid Flow in the Shallow Crust, American Geophysical Union Geophysical Monograph, v.113, p.27-50.
  27. Higgins, M.W. (1971) Cataclastic rocks, United States Geological Survey Professional Paper, v.687, p.97.
  28. Holdsworth, R. E., 2004, Weak faults - rotten cores, Science, v.303, p.181-182. https://doi.org/10.1126/science.1092491
  29. Ikari, M.J., Saffer, D.M. and Marone, C. (2007) Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. Journal of Geophysical Research, v.112, p.B06423. https://doi.org/10.1029/2006JB004748
  30. Ikari, M.J., Saffer, D.M. and Marone, C. (2009) Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research, v.114, p.B05409. https://doi.org/10.1029/2008jb006089
  31. Kahraman, S. and Alber, M. (2006) Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. International Journal of Rock Mechanics and Mining Sciences, v.43, p.1277-1287. https://doi.org/10.1016/j.ijrmms.2006.03.017
  32. Kanji, M.A. (2014) Critical issues in soft rocks. Journal of Rock Mechanics and Geotechnical Engineering, v.6, p.186-195. https://doi.org/10.1016/j.jrmge.2014.04.002
  33. Kim, K.Y., Suh, H.S., Yun, T.S., Moon, S.W. and Seo, Y.S. (2016) Effect of particle shape on the shear strength of fault gouge. Geosciences Journal, v.20, p.351-359. https://doi.org/10.1007/s12303-015-0051-0
  34. Lanzerstorfer, C.L. and Hinterberger, M. (2017) Influence of the moisture content on the flowability of finegrained iron ore concentrate. International Journal of Chemical and Molecular Engineering, v.11, p.265-268.
  35. Lindquist, E.S. and Goodman, R.E. (1994) The strength and deformation properties of the physical model melange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema.
  36. Matula, M., Dearman, W.R., Golodkovskaja, G.A., Bundesanstalt, A.P. and Radbruch-Hall, D.H. (1981) Rock and soil description and classification for engineering geological mapping Report by the International Association Engineering Geology Commission on Engineering Geological Mapping. Bulletin of the International Association of Engineering Geology, v.24, p.235-274. https://doi.org/10.1007/BF02595273
  37. Moon, S.W., Yun, H.S., Kim, W.S., Na, J.H., Kim, C.Y. and Seo, Y.S. (2014) Correlation analysis between weight ratio and shear strength of fault materials using multiple regression analysis. The Korean Society of Engineering Geology, v.24, p.397-409 (in Korean with English abstract).
  38. Moore, D.E. and Lockner, D.A. (2004) Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research, v.109, p.B03401. https://doi.org/10.1029/2003jb002582
  39. Morrow, C.A., Moore, D.E. and Lockner, D.A. (2000) The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophysical Research Letters, v.76, p.815-818.
  40. NAVFAC (Naval Facilities Engineering Command) (1986) Soil mechanics. NAVFAC Design Manual 7.01, p.348.
  41. Park, C.S. and Jeong, J.G. (2018) Characteristics of shear strength parameters of various soils by direct shear test. Tunnel & Underground Space, v.28, p.584-595 (in Korean with English abstract). https://doi.org/10.7474/TUS.2018.28.6.584
  42. Riedmuller, G., Brosch, F.J., Klima, K. and Medley, E.W. (2001) Engineering Geological Characterization of Brittle Faults and Classification of Fault Rocks. Felsbau, Rock and Soil Engineering: Journal for Engineering Geology, v.19, p.13-18.
  43. Saffer, D.M. and Marone, C. (2003) Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth and Planetary Science Letters, v.215, p.219-235. https://doi.org/10.1016/S0012-821X(03)00424-2
  44. Schopfer, M.P.J., Abe, S., Childs, C. and Walsh, J.J. (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling. International Journal of Rock Mechanics & Mining Sciences, v.46, p.250-261. https://doi.org/10.1016/j.ijrmms.2008.03.009
  45. Scuderi, M.M. and Collettini, C. (2016) The role of fluid pressure in induced vs. triggered seismicity: insights from rock deformation experiments on carbonates. Scientific Report, v.6, p.24852. https://doi.org/10.1038/srep24852
  46. Shipton, Z.K. and Cowie, P.A. (2003) A conceptual model for the origin of fault damage zone structures in highporosity sandstone. Journal of Structural Geology, v.25, p.333-344. https://doi.org/10.1016/S0191-8141(02)00037-8
  47. Shipton, Z.K., Soden, A.M., Kirkpatrick, J.D., Bright, A.M. and Lunn, R.J. (2006) How thick is a fault? fault displacement-thickness scaling revisited. Geophysical Monograph Series, v.170, p.193-198.
  48. Snoke, A.W., Tullis, J. and Todd, V.R. (1998) Fault-related rocks. A Photographic Atlas - Princeton: Princeton University Press, p.617.
  49. Stille, H. and Palmstrom, A. (2008) Ground behaviour and rock mass composition in underground excavations. Tunnelling and Underground Space Technology, v.23, p.46-64. https://doi.org/10.1016/j.tust.2006.11.005
  50. Sulem, J., Vardoulakis, I., Ouffroukh, H., Boulon, M. and Hans, J. (2004) Experimental characterization of the thermo-poro-mechanical properties of the Aegion Fault gouge. Comptes Rendus Geoscience, v.336, p.455-466. https://doi.org/10.1016/j.crte.2003.12.009
  51. Tesei, T., Collettini, C., Carpenter, B.M., Viti, C. and Marone, C. (2012) Frictional strength and healing behavior of phyllosilicate-rich faults. Journal of Geophysical Research, v.117, p.B09402.
  52. Tsige, M., Gonzalez de Vallejo, L., Doval, M. and Barba, C. (1994) Microfabric of Guadalquivir 'Blue Marls' and its engineering geological significance. 7th International IAEG Congress, p.659-665.
  53. Twiss, R.J. and Moores, E.M. (1992) Structural geology, W.H. freeman and Company, New York, p.532.
  54. Vallejo, L.E. and Mawby, R. (2000) Porosity influence on the shear strength of granular material clay mixtures. Engineering Geology, v.58, p.125-136. https://doi.org/10.1016/S0013-7952(00)00051-X
  55. Vomocil, J.A. and Waldron, L.J. (1962) The effect of moisture content on tensile strength of unsaturated glass bead systems. Soil Science Society of America Journal, v.26, p.409-412. https://doi.org/10.2136/sssaj1962.03615995002600050003x
  56. Woodcock, N.H. and Mort, K., (2008) Classification of fault breccias and related fault rocks. Geological Magazine, v.145, p.435-440. https://doi.org/10.1017/S0016756808004883
  57. Xia, H., Zhou, G. and Du, Z. (2011) Experimental study on shear mechanical characteristics of cohesionless granular material. Applied Mechanics and Materials, v.90-93, p.230-233. https://doi.org/10.4028/www.scientific.net/AMM.90-93.230
  58. Yun, H.S., Moon, S.W. and Seo, Y.S. (2018) Determination of representative elementary volume of fault core materials by particle distribution analysis. Geosciences Journal, v.22, p.105-119. https://doi.org/10.1007/s12303-017-0033-5
  59. Yun, H.S., Moon, S.W. and Seo, Y.S. (2019) Relationship between shear strength and component content of fault cores. Economic and Environmental Geology, v.52, p.65-79 (in Korean with English abstract). https://doi.org/10.9719/EEG.2019.52.1.65