DOI QR코드

DOI QR Code

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis

포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로

  • Kim, Seon-Ok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2020.01.29
  • Accepted : 2020.02.26
  • Published : 2020.02.28

Abstract

Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

이산화탄소 지중저장은 대규모로 포집된 이산화탄소를 지하 심부의 지질구조 내로 주입하여 대기중 방출을 제한하려는 지구온난화 대응기술이다. 본 연구에서는 국내 최초의 이산화탄소 지중주입 실증 연구 지역인 포항분지의 지하 800 m 이하에서 시추된 심부 코어 시료를 대상으로 FE-SEM, XRD, XRF, MICP 등 분석을 수행하여 덮개암층을 구성하는 이암의 광물학적 특성을 규명하고 이산화탄소 지중저장의 안정성과 신뢰성에 직접적인 영향을 미치는 수리지질학적 차폐능을 정량적으로 평가하고자 하였다. 광물학적 분석 결과 포항분지 영일층군 이암층은 주로 석영, K-장석, 사장석과 소량의 황철석, 방해석, 점토 광물로 이루어져 있는 것으로 나타났다. 수은 모세관 압입 시험 분석 결과, 시료는 대체적으로 균일한 입자 구성과 공극 분포를 가지고 있었으며, 산정된 공극률과 공기 투과도 사이에서 뚜렷한 상관관계는 나타나지 않았다. 산정된 공극진입압력과 돌파압력을 적용한 허용가능 CO2 기둥 높이는 이산화탄소 주입 대상층의 두께에 비해 현저하게 높은 것으로 나타났다. 이러한 결과는 포항분지 영일층군의 이암층이 이산화탄소 지중저장 주입실증 사업에서 시범 주입되는 이산화탄소의 누출을 억제하기에 충분한 차폐능을 보유하고 있음을 보여주었다. 그러나, 본 연구의 결과는 제한된 수량의 시료를 분석·평가한 것으로서 그에 상응하는 제한된 의미를 지닌다. 따라서, 실제적인 이산화탄소 지중저장 과정에서 수행되는 덮개암층의 차폐능 평가를 위해서는 지층 전체 규모에 대한 다수의 시료 채취와 그에 대한 다면적 분석과 평가가 이루어져야 할 것으로 판단된다.

Keywords

References

  1. Bachu, S. (2015) Review of CO2 storage efficiency in deep saline aquifer. Int. J. Greenh. Gas Control, v.40, p.188-202. https://doi.org/10.1016/j.ijggc.2015.01.007
  2. Bear, J. (1988) Dynamics of fluids in porous media. Dover, New York.
  3. Chadwick, R.A., Zweigel, P., Gregersen, U., Kirby. G.A., Holloway, S. and Johannessen, P.N. (2004) Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, Northern North Sea. Energy, v.29, p.1371-1381. https://doi.org/10.1016/j.energy.2004.03.071
  4. Comisky, J.T., Santiago, M., McCollom, B., Buddhala, A. and Newsham, K.E. (2007) Sample size effects on the application of mercury injection capillary pressure for determining the storage capacity of tight gas and oil shales. Society of Petroleum Engineers.
  5. Daniel, R.F. and Kaldi, J.G. (2009) Evaluating seal capacity of cap rocks and intraformational barriers for CO2 containment. In: In: Grobe, M., Pashin, J.C., Dodge, R.L. (Eds.), Carbon Dioxide Sequestration in Geological Media-State of the Science 59. AAPG Studies in Geology, p. 335-345.
  6. Daniel, R. and Kaldi, J. (2012) Mercury-injection capillary-pressure analysis. In: In: Daniel, R., Kaldi, J. (Eds.), Atlas of Australian and New Zealand Hydrocarbon Seals: Worldwide Analogs For Cap Rocks and Intraformational Barriers in Clastic Depositional Settings 60 American Association of Petroleum Geologists Studies in Geology.
  7. Dewhurst, D.N., Jones, R.M. and Raven, M.D. (2002) Microstructural and petrophysical characterization of Muderong Shale: application to top seal risking: Pet. Geosci., v.8, p.371-383. https://doi.org/10.3390/geosciences8100371
  8. Downey, M.W. (1984) Evaluating seals for hydrocarbon accumulations. APPG Bulletin, v.68, p.1752-1763.
  9. Garcia, X., Akanji L.T., Blunt, M.J., Matthai, S.K. and Latham, J.P. (2009) Numerical study of the effects of particle shape and polydispersity on the single-phase permeability. Phys. Rev. v.80, p.1539-3755.
  10. Ingram, G.M., Urai, J.L. and Naylor, M.A. (1997) Sealing processes and top seal assessment. In: Moller-Pedersen, P. and Koestler, A.G. (eds.) Hydrocarbon Seals: Importance for Exploration and Production. Norwegian Petroleum Society (NPF) Special Publication, v.7, p.165-175.
  11. IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide capture and storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, 4.
  12. Katz, A.J. and Thompson, A.H. (1987) Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res.-Sol. Ea. v.92, p.599-607. https://doi.org/10.1029/JB092iB01p00599
  13. Kaufmann, J., Loser, R. and Leemann, A. (2009) Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. J. Colloid Interface Sci. v.336, p.730-737. https://doi.org/10.1016/j.jcis.2009.05.029
  14. Kivior, T., Kaldi, J.G. and Lang, S.C. (2002) Seal potential in Cretaceous and late Jurassic rocks of the Vulcan Sub-Basin, North West Shelf, Australia: The APPEA J. v.42, p.203-224. https://doi.org/10.1071/AJ01012
  15. Lee, C., Kim, T.K. and Park, D.W. (2009) Geology and geochemistry of volcanic and sedimentary rocks from deep borehole in the Heunghae area, North Kyungsang Province. J. Engin. Geol. v.19, p.459-474 (in Korean with English abstract).
  16. Lee, S.G., Lee, T. and Kim, T.K. (2007) U-Th Age in granodiorite situ core from underground 2300 m, Honghae, Pohang, Korea: A study of ages of the Pohang basin basement, Annual Conference of the Geological Society of Korea (Abstracts), p.110.
  17. Lohr, C.D. and Hackley, P.C. (2018) Using mercury injection pressure analyses to estimate sealing capacity of the Tuscaloosa marine shale in Mississippi, USA: Implications for carbon dioxide sequestration. Int. J. Greenh. Gas Control, v.78, p. 375-387. https://doi.org/10.1016/j.ijggc.2018.09.006
  18. Lu, J., Milliken, K., Reed, R.M. and Hovorka, S. (2011) Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the cranfield carbon dioxide injection site, Mississippi, U.S.A. Environ. Geosci. v.18, p.35-53. https://doi.org/10.1306/eg.09091010015
  19. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T. (2010) Geological storage of CO2 in saline aquifers - A review of the experience from existing storage operations. Int. J. Greenh. Gas Control, v.4, p.659-667. https://doi.org/10.1016/j.ijggc.2009.12.011
  20. Park, J., Kim, J. and Yoon, H. (2015) Three-dimensional geologic modeling of the Pohang Basin in Korea for geologic storage of carbon dioxide. J. Geol. Soc. Korea. v.51, p.289-302. https://doi.org/10.14770/jgsk.2015.51.3.289
  21. Porcheron, F. and Monson, P.A. (2004) Modeling mercury porosimetry using statistical mechanics. Langmuir, v.20, p.6482-6489. https://doi.org/10.1021/la049939e
  22. Rezaee, R., Saeedi, A. and Clennell, B. (2012) Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Petrol. Sci. Eng. v.88, p.92-99. https://doi.org/10.1016/j.petrol.2011.12.014
  23. Schowalter, T.T. (1979) Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bulletin, v.63, p.723-760.
  24. Sohn, M., Song, C.W., Sohn, Y.K. and Kwon, Y.K. (2011) Geological structure and Depositional systems of Miocene Pohang basin for promising CO2 storage, Annual Conference of the Geological Society of Korea (Abstracts), October 26-28, p.108.
  25. Swanson, B.F. (1981) A simple correlation between permeabilities and mercury capillary pressures. J. Pet. Technol. v.33, p.2498-2504. https://doi.org/10.2118/8234-PA
  26. Tanko, N.L. (2011) Transport Relationship in Porous Media as a Model for Oil Reservoir Rocks. PhD thesis., University of Bath.
  27. Um. S.H., Lee, D.W. and Bak, B.S. (1964) Explanatory text of the geological map of Pohang sheet, Scale 1:50,000. Technical Report Sheet-7022-II, Geological Survey of Korea (GSK), Seoul, Korea, 37 p.1 map sheet (in Korean and English).
  28. Washburn, E.W. (1921) Note on a method of determining the distribution of pore sizes in a porous material: Proceedings of the National Academy, v.7, p.115-116. https://doi.org/10.1073/pnas.7.4.115
  29. Watts, N.L. (1987). Theoretical aspects of cap-rock and fault seals for singe- and two-phase hydrocarbon columns. Mar. Petrol. Geol., v.4, p.274-307. https://doi.org/10.1016/0264-8172(87)90008-0
  30. Wiprut, D. and Zoback, M.D. (2002) Fault reactivation, leakage potential, and hydrocarbon column heights in the northern north sea. Norwegian Petroleum Society Special Publications. Koestler, A.G. and Hunsdale, R., Elsevier. v.11, p. 203-219.
  31. Zinszner, B. and Pellerin, F.M. (2007) A Geoscientist's Guide to Petrophysics. IFP Publications, Paris.