DOI QR코드

DOI QR Code

One-dimensional Analytical Solutions for Diffusion from a Low-permeability Layer

1차원 해석해를 이용한 저투수성 매체에서의 확산에 관한 연구

  • Jang, Seonggan (Division of Earth Environmental System Sciences, Pukyong National University) ;
  • Yang, Minjune (Department of Earth and Environmental Sciences, Pukyong National University)
  • 장성간 (부경대학교 지구환경시스템과학부) ;
  • 양민준 (부경대학교 지구환경과학과)
  • Received : 2020.01.03
  • Accepted : 2020.02.01
  • Published : 2020.02.28

Abstract

One-dimensional analytical solutions were used for forward and back diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) in a single system with high- and low-permeability layers. Concentration profiles in a low-permeability layer, diffusive fluxes at the interface between the high- and low-permeability layers, and contaminant persistence in the high-permeability layer due to back diffusion were simulated with a comparison of semi-infinite and finite analytical solutions. In order to validate the analytical solutions used in this study, the results of one-dimensional analytical solutions developed by Yang et al. (2015) were compared with Nash-Sutcliffe model efficiency coefficient (NSE). When compared with Yang et al. (2015), the analytical solutions used in this study showed good agreements (NSE = 0.99). When compared with semi-infinite analytical solutions, TCE and PCE concentration profiles in the low-permeability layer, the diffusive fluxes, and the contaminant tailings of the high-permeability layer were underestimated. In order to determine the appropriate analytical solutions based on the effective diffusion coefficient, the thickness of the low-permeability layer, and the diffusion time in the TCE and PCE contaminated site, a term of dimensionless diffusion length (Zd) was used. If the Zd is less than 0.7, the semi-infinite solutions can be used to simulate accurate concentration profiles in low-permeability layers. If the Zd is greater than 0.7, the reliability of simulations may be improved by using the finite solutions.

본 연구는 대수층과 저투수층이 존재하는 단일시스템에서 trichloroethylene (TCE)과 tetrachloroethylene (PCE)의 거동에 대해 1차원 확산 해석해를 사용하여 저투수층의 농도 분포, 대수층과 저투수층의 경계면에서 확산 선속, 그리고 역확산에 의한 대수층의 오염 지속성을 모델링하였다. 모델링에 사용된 해석해는 이전 연구에서 많이 사용되었던 저투수층의 두께가 무한한 조건의 해석해와 본 연구에서 제시한 저투수층의 두께가 유한한 조건을 고려한 해석해를 모두 사용하였다. 제시된 해석해의 타당성을 평가하기 위해 저투수층의 두께가 무한한 조건의 해석해와 Yang et al.(2015)이 개발한 1차원 확산 해석해의 결과를 Nash-Sutcliffe 유효계수(NSE)로 비교하였다. 저투수층의 농도 분포, 확산 선속, 그리고 대수층의 오염 지속성 등 모든 결과에서 무한한 조건의 해석해를 이용하였을 때 과소평가되는 결과를 나타내었다. 그리고 본 연구에서 제시한 해석해의 결과와 Yang et al. (2015)이 개발한 해석해의 결과는 높은 일치성(NSE = 0.99)을 보였다. 본 연구에서 제시한 해석해를 실제 오염된 부지에 효율적으로 적용하기 위해 유효확산계수, 저투수층의 두께, 그리고 확산된 시간을 이용하여 확산 거리(Zd)라는 용어를 소개하였다. 확산 거리가 0.7 보다 작은 경우 저투수층의 두께가 무한한 조건의 해석해를 사용할 수 있으며, 확산 거리가 0.7 보다 큰 경우 저투수층의 두께가 유한한 확산 해석해를 사용하여야 모델링의 신뢰성을 높일 수 있을 것으로 사료된다.

Keywords

References

  1. Anderson, M.R., Johnson, R.L. and Pankow, J.F. (1992) Dissolution of Dense Chlorinated Solvents Into Groundwater. 3. Modeling Contaminant Plumes From Fingers and Pools of Solvent. Environmental Science and Technology, v.26, p.901-908. https://doi.org/10.1021/es00029a005
  2. Ball, W.P., Liu, C., Xia, G. and Young, D.F. (1997) A diffusion-based interpretation of tetrachloroethene and trichloroethene concentration profiles in a groundwater aquitard. Water Resources Research, v.33, p.2741-2757. https://doi.org/10.1029/97WR02135
  3. Bear, J. (1972) Dynamics of Fluids in Porous Media. Courier Dover Publications, New York, 764p.
  4. Brown, G.H., Brooks, M.C., Wood, A.L., Annable, M.D. and Huang, J. (2012) Aquitard contaminant storage and flux resulting from dense nonaqueous phase liquid source zone dissolution and remediation. Water Resources Research, v.48, p.1-17. https://doi.org/10.1016/j.advwatres.2012.07.002
  5. Carslaw, H.S. and Jaeger, J.C. (1952) Conduction of Heat in Solids: 2nd ed. Clarendon press, Oxford, 510p.
  6. Chang, S.U., Park, J.K. and Um, W.Y. (2018) Study of Mobility for Radionuclides in Nuclear Facility Sites. Economic and Environmental Geology, v.51, p.99-111. https://doi.org/10.9719/EEG.2018.51.2.99
  7. Chapman, S.W. and Parker, B.L. (2005) Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resources Research, v.41, p.1-16.
  8. Chapman, S.W., Parker, B.L., Sale, T.C. and Doner, L.A. (2012) Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones. Journal of Contaminant Hydrology, v.136-137, p.106-116. https://doi.org/10.1016/j.jconhyd.2012.04.006
  9. Chon, C.M., Moon, S.H., Ahn, J.S., Kim, Y.S., Won, J.H. and Ahn, K.H. (2007) Fate and Transport of Cr(VI) Contaminated Groundwater from the Industrial Area in Daejeon. Economic and Environmental Geology, v.40, p.403-418.
  10. Fetter, C.W., Boving, T. and Kreamer, D. (2018) Contaminant hydrogeology: 3rd ed. Waveland press, Illinoes, 647p.
  11. Lee, J.Y., Kwon, H.P., Jeon, W.H., Jun, S.C. and Cheon, J.Y. (2013) Simultaneous evaluation of distribution characteristics of hydraulic parameters and groundwater contaminants estimated by a short-term pumping. Journal of the Geological Society of Korea, v.49, p.275-287.
  12. Legates, D.R. and McCabe, G.J. (1999) Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research, v.35, p.233-241. https://doi.org/10.1029/1998WR900018
  13. Liu, C. and Ball, W.P. (2002) Back Diffusion of Chlorinated Solvent Contaminants from a Natural Aquitard to a Remediated Aquifer Under Well-Controlled Field Conditions: Predictions and Measurements. Groundwater, v.40, p.175-184. https://doi.org/10.1111/j.1745-6584.2002.tb02502.x
  14. Mackay, D.M. and Cherry, J.A. (1989) Groundwater contamination: Pump-and-treat remediation. Environmental Science and Technology, v.23, p.630-636. https://doi.org/10.1021/es00064a001
  15. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models part I-a discussion of principles. Journal of Hydrology, v.10, p.282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  16. Sale, T.C., Zimbron, J.A. and Dandy, D.S. (2008) Effects of reduced contaminant loading on downgradient water quality in an idealized two-layer granular porous media. Journal of Contaminant Hydrology, v.102, p.72-85. https://doi.org/10.1016/j.jconhyd.2008.08.002
  17. U.S. Environmental Protection Agency. (1985a) Health assessment document for trichloroethylene. EPA/600/8-82/006F, final report. Research Tri-angle, NC: U.S. Environmental Protection Agency.
  18. U.S. Environmental Protection Agency. (1985b) Health assessment document for tetrachloroethylene (perchloroethylene). EPA/600/8-82/005F, final report. Research Tri-angle, NC: U.S. Environmental Protection Agency.
  19. Yang, M., Annable, M.D. and Jawitz, J.W. (2014) Light reflection visualization to determine solute diffusion into clays. Journal of Contaminant Hydrology, v.161, p.1-9. https://doi.org/10.1016/j.jconhyd.2014.02.007
  20. Yang, M., Annable, M.D. and Jawitz, J.W. (2015) Back diffusion from thin low permeability zones. Environmental Science and Technology, v.49, p.415-422. https://doi.org/10.1021/es5045634
  21. Yang, M., Annable, M.D. and Jawitz, J.W. (2017) Forward and back diffusion through argillaceous formations. Water Resources Research, v.53, p.4514-4523. https://doi.org/10.1002/2016WR019874