DOI QR코드

DOI QR Code

Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns

  • Liu, Wen-qi (School of Computer Science and Engineering, University of Electronic Science and Technology of China) ;
  • Liu, Shan-jun (Key Lab of Information Network Security, Ministry of Public Security) ;
  • Fan, Ming-yu (School of Computer Science and Engineering, University of Electronic Science and Technology of China) ;
  • Tian, Wei (The 9533 troop of People's Liberation Army of China) ;
  • Wang, Ji-peng (School of Computer Science and Engineering, University of Electronic Science and Technology of China) ;
  • Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • 투고 : 2019.12.26
  • 심사 : 2020.03.22
  • 발행 : 2020.04.25

초록

This paper deals with free vibration analysis of non-uniform column resting on elastic foundations and subjected to follower force at its free end. The internal pores and graphene platelets (GPLs) are distributed in the matrix according to different patterns. The model is proposed with material parameters varying in the thickness of column to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite column, it is crucial to consider porosities inside the material structure.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Public Security, National Natural Science Foundation of China

This work is supported by Key Lab of Information Network Security, Ministry of Public Security (Grant No.C18605), and by the National Natural Science Foundation of China (Grant No. 60373109, 60272091).

참고문헌

  1. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  2. Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  3. Akgoz, B. and Civalek, O. (2015), "A novel microstructure-dependent shear deformable beam model", International J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003.
  4. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  5. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  6. Bacciocchi, M., Tarantino, A.M. (2020), "Modeling and numerical investigation of the viscoelastic behavior of laminated concrete beams strengthened by CFRP strips and carbon nanotubes", J. Constr. Build. Mater., 233. https://doi.org/10.1016/j.conbuildmat.2019.117311.
  7. Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.
  8. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  9. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
  10. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  11. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882.
  12. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
  13. Capecchi, D., Ruta, G. and Trovalusci, P. (2011), "Voigt and Poincare's mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling", Archive Appl. Mech., 81, 1573-1584. https://doi.org/10.1007/s00419-010-0502-z.
  14. Celep, Z. (1980), "Stability of a beam on an elastic foundation subjected to a nonconservative load", J. Appl. Mech., 47(1), 116-120. https://doi.org/10.1115/1.3153587.
  15. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  16. Civalek, O. and Cigdem, D. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.
  17. Cornacchia, F., Liu., T., Bai, Y. and Fantuzzi, N. (2019), "Tensile strength of the unbonded flexible pipes", Compos. Struct., 218, 142-151. https://doi.org/10.1016/j.compstruct.2019.03.028.
  18. Du, H., Liew, K.M. and Lim, M.K. (1996), "Generalized differential quadrature method for buckling analysis", J. Eng. Mech., 122(2), 95-100. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2.
  19. Ebrahimi, S., Zahrai, S.M. and Mirghaderi, S.R. (2019), "Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams", Steel Compos. Struct., 31(6), 541-558. https://doi.org/10.12989/scs.2019.31.6.541.
  20. Erasmo Viola, E., Marzani, A. and Fantuzzi, N. (2016), "Interaction effect of cracks on flutter and divergence instabilities of cracked beams under subtangential forces", Eng. Frac. Mech., 151, 109-129. https://doi.org/10.1016/j.engfracmech.2015.11.010.
  21. Fantuzzi, N. and Borgia, F. (2019), "Theoretical and Applied Insights on Pistons Buckling According to DNV Regulation", J. Offshore Mech. Arct. Eng., 141(4). https://doi.org/10.1115/1.4041999.
  22. Feng, Y. and Bert, C.W. (1992), "Application of quadrature method to flexural vibration analysis of a geometrically nonlinear beam", J. Nonlinear Dynam., 3, 13-18. https://doi.org/10.1007/BF00045468
  23. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
  24. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
  25. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  26. Hauger, W. and Vetter, K. (1976), "Influence of an elastic foundation on the stability of a tangentially loaded column", J. Sound Vib., 47(2), 296-299. https://doi.org/10.1016/10.1016/0022-460x(76)90726-4.
  27. Karami, G., Malekzadeh, P. and Shahpari, S. (2003), "A DQEM for vibration of deformable non-uniform beams with general boundary conditions", Eng. Struct., 25, 1169-1178. https://doi.org/10.1016/S0141-0296(03)00065-8.
  28. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  29. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
  30. Lee, S.Y. and Yang, C.C. (1994), "Nonconservative instability of non-uniform beams resting on an elastic foundation", J. Sound Vib., 169, 433-444. https://doi.org/10.1006/jsvi.1994.1027.
  31. Lai, B., Richard, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compos. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.
  32. Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. T. ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735.
  33. Liu, R. and Wang, L. (2015), "Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics", Physical Chemistry Chemical Physics, 7. https://doi.org/10.1039/C4CP05495D.
  34. Li, X., Zhou, X., Liu J. and Wang, X. (2019), "Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete", Steel Compos. Struct., 32(3), 411-422. https://doi.org/10.12989/scs.2019.32.3.411.
  35. Mahmoud, A.A., Awadalla, R. and Nassar, N.M. (2011), "Free vibration of non-uniform column using DQM", Mech. Res. Commun., 38, 443-448. https://doi.org/10.1016/j.mechrescom.2011.05.015.
  36. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Boundary Value Problems, 2013(135), 1-14. https://doi.org/10.1186/1687-2770-2013-1
  37. Marin, M. and Florea, O., (2014), "On temporal behavior of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188.
  38. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045
  39. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28, 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  40. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dynam. Syst. Appl., 25(1-2), 175-196.
  41. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of saint-venant's problem for elastic dipolar bodies with voids", Carpathian J. Mathematics, 32(2), 219-232.
  42. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
  43. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  44. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Design, 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018.
  45. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2). https://doi.org/10.12989/scs.2016.22.2.277.
  46. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
  47. Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel Compos. Struct., 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.
  48. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  49. Pelletier Jacob, L. and Vel Senthil, S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.
  50. Pingaro, M., Reccia, E. and Trovalusci, P. (2019), "Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method", Comput. Mech., 64, 197-210. https://doi.org/10.1007/s00466-018-1665-7.
  51. Quan, J.R. and Chan, C.T. (1989), "New insights in solving distributed system equation by the quadrature methods", Comput. Chem. Eng., 13, 779-788. https://doi.org/10.1016/0098-1354(89)85051-3.
  52. Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA Journal,43(5), 1109-1116. https://doi.org/10.2514/1.4683.
  53. Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.
  54. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.
  55. Shu, C. and Du, H. (1997a), "Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates", Int. J. Solids. Struct., 34, 819-835. https://doi.org/10.1016/S0020-7683(96)00057-1.
  56. Shu, C. and Du, H. (1997b), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids. Struct., 34, 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.
  57. Shu, C. (2000), "Differential Quadrature and Its Application in Engineering", Springer, Berlin.
  58. Smith, T.E. and Herrmann, G. (1972), "Stability of a beam on an elastic foundation subjected to a follower force", J. Appl. Mech., 39, 628-629. https://doi.org/10.1115/1.3422743.
  59. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  60. Sundararajan, C. (1974), "Stability of columns on elastic foundations subjected to conservative or nonconservative forces", J. Sound Vib., 37(1), 79-85. https://doi.org/10.1016/S0022-460X(74)80059-3.
  61. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
  62. Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.
  63. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale Approach for Three-Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures", Polymer Composites, In Press, DOI: 10.1002/pc.24520.
  64. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  65. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  66. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  67. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  68. Trovalusci, P., Varano, V. and Rega, G. (2010), "A generalized continuum formulation for composite microcracked materials and wave propagation in a bar", J. Appl. Mech., 77(6). https://doi.org/10.1115/1.4001639.
  69. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.
  70. Wang, X. and Bert, C.W. (1993), "A new approach in applying differential quadrature to static and free vibrational analysis of beam and plates", J. Sound Vib., 162(3), 566-572. https://doi.org/10.1006/jsvi.1993.1143.
  71. Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.
  72. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  73. Xu, W., Wang, L. and Jiang, J. (2016), "Strain gradient finite element analysis on the vibration of double-layered graphene sheets", Int. J. Comput. Methods, 13(3). https://doi.org/10.1142/S0219876216500110.
  74. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.
  75. Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.
  76. Zhang, Y. and Wang, L. (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", J. Appl. Phys., 124(13), 10.1063/1.5047584. https://doi.org/10.1063/1.5047584.
  77. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sensor Actuat., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.