DOI QR코드

DOI QR Code

A comparative analysis of sheeting die geometries using numerical simulations

  • Igali, Dastan (Department of Mechanical & Aerospace Engineering, School of Engineering & Digital Sciences, Nazarbayev University) ;
  • Wei, Dongming (Mathematics Department, School of Sciences and Humanities, Nazarbayev University) ;
  • Zhang, Dichuan (Department of Civil & Environmental Engineering, School of Engineering & Digital Sciences, Nazarbayev University) ;
  • Perveen, Asma (Department of Mechanical & Aerospace Engineering, School of Engineering & Digital Sciences, Nazarbayev University)
  • Received : 2019.08.28
  • Accepted : 2019.10.27
  • Published : 2020.04.25

Abstract

The flow behavior of polymer melts within a slit die is an important consideration when designing a die geometry. The quality of the extruded polymer product can be determined through an evaluation of the flow homogeneity, wall shear rate and pressure drop across the central height of the die. However, mathematical formulations cannot fully determine the behavior of the flow due to the complex nature of fluid dynamics and the nonlinear physical properties of the polymer melts. This paper examines two slit die geometries in terms of outlet velocity uniformity, shear rate uniformity at the walls and pressure drop by using the licensed computational fluid dynamics package, Ansys POLYFLOW, based on the finite element method. The Carreau-Yasuda viscosity model was used for the rheological properties of the polypropylene. Comparative analysis of the simulation results will conclude that the modified die design performs better in all three aspects providing uniform exit velocity, uniform wall shear rates, and lower pressure drop.

Keywords

Acknowledgement

Grant : Development and Prototyping of Extrusion Dies for Advanced Plastic Sheets and Thin Film Production

Supported by : Ministry of Education and Science of the Republic of Kazakhstan

This research was funded under the target program No AP05134166 "Development and Prototyping of Extrusion Dies for Advanced Plastic Sheets and Thin Film Production" from the Ministry of Education and Science of the Republic of Kazakhstan.

References

  1. Abbasi, F., Hayat, T. and Alsaedi, A. (2015), "Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects", J. Magnetism Magnetic Mater., 382, 104-110. https://doi.org/10.1016/j.jmmm.2015.01.040.
  2. Chen, C., Jen, P. and Lai, F. (1997), "Optimization of the coathanger manifold via computer simulation and an orthogonal array method", Polymer Eng. Sci., 37, 188-196. https://doi.org/10.1002/pen.11661.
  3. Choudhary, M.K. and Kulkarni, J.A. (2008), "Modeling of three-dimensional flow and heat transfer in polystyrene foam extrusion dies", Polymer Eng. Sci., 48, 1177-1182. https://doi.org/10.1002/pen.20990.
  4. Drozdov, A.D., Al-Mulla, A. and Gupta, R.K. (2012), "Structure-property relations for polymer melts: Comparison of linear low-density polyethylene and isotactic polypropylene", Adv. Mater. Res., 1(4), 245-268. http://dx.doi.org/10.12989/amr.2012.1.4.245.
  5. Gifford, W. (1997), "The use of three-dimensional computational fluid dynamics in the design of extrusion dies", J. Reinforced Plastics Compos., 16, 661-674. https://doi.org/10.1177/073168449701600705.
  6. Gormar, E.H. (1968), "Beitrag zur verarbeitungsgerechten Dimensionierung von Breitschlitzwerkzeugen fur thermisch instabile Thermoplaste insbesondere PVC", Ph.D. Dissertation, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany.
  7. Han, W. and Wang, X. (2012), "Optimal geometry design of the coat-hanger die with uniform outlet velocity and minimal residence time", J. Appl. Polymer Sci., 123, 2511-2516. https://doi.org/10.1002/app.34827.
  8. Hayat, T., Abbasi, F.M., Ahmad, B. and Alsaedi, A. (2014), "Peristaltic transport of Carreau-Yasuda fluid in a curved channel with slip effects", PloS ONE, 9, e95070. https://doi.org/10.1371/journal.pone.0095070.
  9. Hornsby, P. (1992), Extrusion Dies For Plastics And Rubber, W. Michaeli Hanser Publishers, Munich, Bavaria, Germany.
  10. Huang, Y., Gentle, C.R. and Hull, J.B. (2004), "A comprehensive 3-D analysis of polymer melt flow in slit extrusion dies", Adv. Polymer Technol. J. Polym. Process. Institute, 23, 111-124. https://doi.org/10.1002/adv.20002.
  11. Kostic, M. and Reifschneider, L. (2006), "Design of extrusion dies", Encyclopedia of Chemical Processing, 10, 633-649. http://doi.org/10.1081/E-ECHP-120039324.
  12. Lebaal, N., Schmidt, F. and Puissant, S. (2009), "Design and optimization of three-dimensional extrusion dies using constraint optimization algorithm", Finite Elements in Analysis and Design, 45, 333-340. https://doi.org/10.1016/j.finel.2008.10.008.
  13. Lei, C. H., Wu, S. Q., Xu, R. J., Xu, Y. Q. and Peng, X. L. (2013), "A study of plastic plateau disappearance in stress-strain curve of annealed polypropylene films during stretching", Adv. Mater. Res., 2(2), 111-118. http://dx.doi.org/10.12989/amr.2013.2.2.111.
  14. Liu, T.J., Liu, L.D. and Tsou, J.D. (1994), "A unified lubrication approach for the design of a coat-hanger die", Polymer Eng. Sci., 34, 541-550. https://doi.org/10.1002/pen.760340702.
  15. Morris, B.A. (2016), The Science And Technology Of Flexible Packaging: Multilayer Films From Resin And Process To End Use, William Andrew, Oxford, U.K.
  16. Polychronopoulos, N.D. and Vlachopoulos, J. (2018), "Polymer processing and rheology", Functional Polymers, 1-47. https://doi.org/10.1007/978-3-319-92067-2_4-1.
  17. Rauwendaal, C. (2014), Polymer Extrusion, Hanser Publishers, Munich, Bavaria, Germany.
  18. Rothemeyer, F. (1969), "Gestaltung Von Extrusionswerkzeugen Unter Berucksichtigung Viskoelastischer Effekte", Kunststoffe, 59, 333-338.
  19. Sander, R. and Pittman, J. (1996), "Simulation of slit dies in operation including the interaction between melt pressure and die deflection", Polymer Eng. Sci., 36, 1972-1989. https://doi.org/10.1002/pen.10593.
  20. Sauceau, M., Fages, J., Common, A., Nikitine, C. and Rodier, E. (2011), "New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide", Progress Polym Sci., 36, 749-766. http://dx.doi.org/10.1016/j.progpolymsci.2010.12.004.
  21. Smith, D.E., Tortorelli, D.A. and Tucker III, C.L. (1998), "Optimal design for polymer extrusion. Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems", Comput. Methods Appl. Mech. Eng., 167, 303-323. https://doi.org/10.1016/S0045-7825(98)00130-3.
  22. Smith, D.E. and Wang, Q. (2005), "Optimization-based design of polymer sheeting dies using generalized Newtonian fluid models", Polymer Eng. Sci., 45, 953-965. https://doi.org/10.1002/pen.20347.
  23. Stephen, C., Bhattacharya, S. and Khan, A. (2006), "Mathematical modeling and numerical simulation for nucleated solution flow through slit die in foam extrusion", Polymer Eng. Sci., 46, 751-762. https://doi.org/10.1002/pen.20536.
  24. Vlachopoulos, J. and Strutt, D. (2009), Multilayer Flexible Packaging, William Andrew Publishing, Norwich, Norfolk, United Kingdom.
  25. Vogel, R., Brunig, H. and Haussler, L. (2015), "Properties of polypropylene fibers using the green chemical orotic acid as nucleating agent", Adv. Mater. Res., 4(4), 207-214. http://dx.doi.org/10.12989/amr.2015.4.4.207.
  26. Wang, Y. (1991), "The flow distribution of molten polymers in slit dies and coathanger dies through three-dimensional finite element analysis", Polymer Eng. Sci., 31, 204-212. https://doi.org/10.1002/pen.760310308.
  27. Wen, S.H., Liu, T.J. and Tsou, J.D. (1994), "Three-dimensional finite element analysis of polymeric fluid flow in an extrusion die. Part I: Entrance effect", Polymer Eng. Sci., 34, 827-834. https://doi.org/10.1002/pen.760341008.
  28. Wieme, T., Tang, D., Delva, L., D'hooge, D.R. and Cardon, L. (2018), "The relevance of material and processing parameters on the thermal conductivity of thermoplastic composites", Polymer Eng. Sci., 58, 466-474. https://doi.org/10.1002/pen.24667.
  29. Wortberg, J. and Tempeler, K. (1983), "Flat sheet die of large processing width", Kunststoffe-German Plastics, 73, 404-406.
  30. Yaragal, S. C. and Ramanjaneyulu, S. (2016), "Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete", Adv. Mater. Res., 5(1), 21-34. http://dx.doi.org/10.12989/amr.2016.5.1.021.
  31. Yilmaz, O. and Kirkkopru, K. (2015), "Design of a process material independent conical coat-hanger die by analytical approach", Fibers Polym., 16, 1955-1963. https://doi.org/10.1007/s12221-015-5292-z.
  32. Zhou, X. and Li, Z. (2011), "A constitutive model for fiber-reinforced extrudable fresh cementitious paste", Comput. Concrete, 8(4), 371-388. https://doi.org/10.12989/cac.2011.8.4.371.