DOI QR코드

DOI QR Code

LIE IDEALS AND COMMUTATIVITY OF 2-TORSION FREE SEMIPRIME RINGS WITH GENERALIZED DERIVATION

  • Sogutcu, Emine Koc (Cumhuriyet University, Faculty of Science, Department of Mathematics) ;
  • Golbasi, Oznur (Cumhuriyet University, Faculty of Science, Department of Mathematics)
  • 투고 : 2016.03.09
  • 심사 : 2019.05.21
  • 발행 : 2020.01.31

초록

In this paper, we investigate commutativity of semiprime rings with a derivation which is strongly commutativity preserving and acts as a homomorphism or as an anti-homomorphism on a nonzero Lie ideal.

키워드

참고문헌

  1. ALI, A., YASEN, M. and ANWAR, M., Strong commutativity preserving mappings on semiprime rings, Bull. Korean Math. Soc., 43(4), (2006), 711-713. https://doi.org/10.4134/BKMS.2006.43.4.711
  2. ASHRAF, M., ALI, A. and RANI, R., On generalized derivations of prime rings, Southeast Asian Bull. of Math., 29, (2005), 669-675.
  3. AWTAR, R.: Lie structure in prime rings with derivations, Publ. Math. Debrecen, 31, (1984), 209-215.
  4. BELL, H. E. and KAPPE, L. C., Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungarica, 53, (1989), 339-346. https://doi.org/10.1007/BF01953371
  5. BERGEN, I., HERSTE˙IN, I. N. and KERRJ.W., Lie ideals and derivation of prime rings, J. of Algebra, 71, (1981), 259-267. https://doi.org/10.1016/0021-8693(81)90120-4
  6. BRESAR, M., On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, (1991), 89-93. https://doi.org/10.1017/S0017089500008077
  7. DAIF, M. N. and BELL, H. E., Remarks on derivations on semiprime rings, Internat J. Math. and Math. Sci., 15(1), (1992), 205-206. https://doi.org/10.1155/S0161171292000255
  8. HONGAN, M., REHMAN, N. and AL-OMARY R. M., Lie ideals and Jordan triple derivations in rings, Rend. Semin. Mat. Univ. Padova, 125, (2011), 147-156. https://doi.org/10.4171/RSMUP/125-9
  9. KOC, E., Some results in semiprime rings with derivation, Commun. Fac. Sci. Univ. Ank. Series A1, 62(1), (2013), 11-20.
  10. POSNER, E. C., Derivations in prime rings, Proc Amer.Math.Soc., 8, (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
  11. REHMAN, N. andHONGAN, M., Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings, Rend. Circ. Mat. Palermo, 60(3), (2011), 437-444. https://doi.org/10.1007/s12215-011-0069-8
  12. SAMMAN, M.S., On strong commutativity-preserving maps, Internat J. Math. Math. Sci., 6,(2005), 917-923. https://doi.org/10.1155/IJMMS.2005.917