References
- Z. Chen, Strong laws of large numbers for sub-linear expectation, Sci. China Math. 59 (2016), no. 5, 945-954. https://doi.org/10.1007/s11425-015-5095-0
- Z. Chen, C. Hu and G. Zong, Strong laws of large numbers for sub-linear expectation without independence, Comm. Stati.-Theory and Mathods 46 (2017), no. 15, 7529-7545. https://doi.org/10.1080/03610926.2016.1154157
- Z. Chen. Z. & F. Hu, A law of the iterated logarithm under sublinear expectations, J. Financial Engineering 1 (2014), no. 2, 1450015. Available at https://doi.org/10.1142/S2345768614500159
- Z. Chen, P. Wu & B. Li, A strong laws of large numbers for non-additive probabilities, Interna. J. Approx. Reason 54 (2013), no. 3, 365-377. https://doi.org/10.1016/j.ijar.2012.06.002
- H. Cheng, A strong law of large numbers for sub-linear under a general moment condition, Stat. & Probab. Lett. 116 (2016), 248-258.
- K. L. Chung, Note on some strong laws of large numbers, Amer. J. Math. 69 (1947), no. 1, 189-192. https://doi.org/10.2307/2371664
- C. Denis & C. Martini, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab. 16 (2006), 827-852. https://doi.org/10.1214/105051606000000169
- I. Gilboa, Expected utility theory with purely subjective non-additive probabilities, J. Math. Econom. 16 (1987),65-68. https://doi.org/10.1016/0304-4068(87)90022-X
- C. Hu, Strong laws of large numbers for sublinear expectation under controlled 1st moment condition, Chines Ann Math. Ser. B 39 (2019), no. 5, 791-804. https://doi.org/10.1007/s11401-018-0096-2
- C. Jardas, J. Pecaric & N. Sarapa, A note on Chung's strong law of large numbers, JMAA 217 (1998), 328-334.
- M. Marinacci, Limit laws for non-additive probabilities and their frequentist interpretation, J. Econom, Theory 84 (1999), 145-195. https://doi.org/10.1006/jeth.1998.2479
- S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type. In: Benth, F. E., et al., Proceedings of the 2005 Abel Symposium. Springer, Berlin-Heidelberg, (2006), 541-567.
- S. Peng, Law of large numbers and central limit theorem under nonlinear expectations, Probability, Uncertainty and Quantitative risk 4 (2019), no. 4, 1-8. https://doi.org/10.1186/s41546-018-0035-x
- S. Peng, A new central limit theorem under sublinear expectations, J. Math. 53 (2008), no. 8, 1989-1994.
- S. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A: Math. 52 (2009), no. 7, 1391-1411. https://doi.org/10.1007/s11425-009-0121-8
- S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion, (2010), arXiv:1002.4546v1 [math.PR].
- V. V. Petrov, On the strong law of large numbers, Theory Probab. Appli. 14 (1969), no. 2, 183-192. https://doi.org/10.1137/1114027
- V. V. Petrov, On the order of growth and sums of dependent variables, Theory Probab. Appli. 18 (1974), no. 2, 348-350. https://doi.org/10.1137/1118036
- J. P. Xu & L. X. Zhang, Three series theorem for independent random variables under sub-linear expectations with applications, Acta Math. Sin., English Ser. 35 (2019), no. 2, 172-184. https://doi.org/10.1007/s10114-018-7508-9
- Q. Y. Wu & Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectation, JMAA 460 (2018), 252-270.
- L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math. 59 (2016), no. 4, 751-768. https://doi.org/10.1007/s11425-015-5105-2
- L. X. Zhang & J. H. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. & Probab. Lett. 137 (2018), 269-276. https://doi.org/10.1016/j.spl.2018.01.022
- L. X. Zhang, The convergencee of the sums of independent random variables under the sub-linear expectation, (2019). Available at https://arxiv.org/abs/1902.10872. https://doi.org/10.1007/s10114-020-8508-0