References
- ASTM 2010. Standard test methods for direct moisture content measurements of wood and wood-base materials (ASTM D4442-92). American Society for Testing and Materials, ASTM International, West Conshohocken, Pennsylvania.
- Awoyemi, L., Westermark, U. 2005. Effects of borate impregnation on the response of wood strength to heat treatment. Wood Science and Technology 39(6): 484-491. https://doi.org/10.1007/s00226-005-0001-5
- Biziks, V., Van Acker, J., Militz, H., Grinins, J., Van den Bulcke, J. 2019. Density and density profile changes in birch and spruce caused by thermohydro treatment measured by X-ray computed tomography. Wood Science and Technology 53(2): 491-504. https://doi.org/10.1007/s00226-018-1070-6
- Bowyer, J.L., Shmulsky, R., Haygreen, J.G. 2007. Forest products and wood science: an introduction. Wiley-Blackwell Publishing, Ames. Iowa(US).
- Cahyono, T.D., Ohorella, S., Febrianto, F. 2012. Beberapa Sifat Kimia dan Keawetan Alami Kayu Samama (Antocephallus macrophyllus) terhadap rayap tanah. Ilmu dan Teknologi Kayu Tropis 10(2): 168-178.
- Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Bahtiar, E.T., Novriyanti, E. 2016. Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Anthocephalus macrophyllus) Veneer. Journal of the Korean Wood Science and Technology 44(2): 828-841. https://doi.org/10.5658/WOOD.2016.44.6.828
- Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Darmawan, W., Bahtiar, E. T., Ohorella, S., Novriyanti, E. 2015. The quality of 8 and 10 years old samama wood (Anthocephalus macrophyllus). J Indian Acad Wood Sci 12(1): 22-28. https://doi.org/10.1007/s13196-015-0140-8
- Can, A., Yildiz, S., Yildiz, C.U., Tomak, D.E. 2010. Effects of boron impregnation and heat treatment on some physical and mechanical properties of spruce and pine wood.
- Chang, Y.-S., Han, Y., Eom, C.-D., Jeon, S., Yeo, H. 2019. Hygroscopic Property of Heat Treated Yellow Poplar (Liriodendron tulipifera) Wood. Journal of the Korean Wood Science and Technology 47(6): 761-769. https://doi.org/10.5658/wood.2019.47.6.761
- Chaouch, M., Petrissans, M., Petrissans, A., Gerardin, P. 2010. Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polymer Degradation and Stability 95(12): 2255-2259. https://doi.org/10.1016/j.polymdegradstab.2010.09.010
- Esteves, B., Pereira, H. 2008. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://doi.org/10.15376/biores.4.1.370-404
- Gaff, M., Babiak, M., Kacik, F., Sandberg, D., Turcani, M., Hanzlik, P., Vondrova, V. 2019. Plasticity properties of thermally modified timber in bending-The effect of chemical changes during modification of European oak and Norway spruce. Composites Part B: Engineering 165: 613-625. https://doi.org/10.1016/j.compositesb.2019.02.019
- Hadi, Y.S., Nurhayati, T., Yamamoto, H. 2007. Ketahanan Kayu Termodifikasi Kimia terhadap Biodeteriorasi: Studi pada Kayu Asap dan Kayu Asetilasi, Bogor (ID).
- JAS 2003. Japanese Agricultural Standard for Structural Laminated Veneer Lumber. JAS: SE-11 No. 237. Japanese Agricultural Standar Association, Japan.
- Kartal, S., Yoshimura, T., Imamura, Y. 2004. Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). International biodeterioration & biodegradation 53(2): 111-117. https://doi.org/10.1016/j.ibiod.2003.09.004
- Kartal, S.N., Hwang, W.-J., Imamura, Y. 2008. Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. Journal of Materials Processing Technology 198(1-3): 234-240. https://doi.org/10.1016/j.jmatprotec.2007.07.001
- Kim, Y.K., Kwon, G.J., Kim, A.R., Lee, H.S., Purusatama, B., Lee, S.H., Kang, C.W., Kim, N.H. 2018. Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. Journal of the Korean Wood Science and Technology 46(5): 511-526. https://doi.org/10.5658/WOOD.2018.46.5.511
- Missio, A.L., de Cademartori, P.H.G., Mattos, B.D., Santini, E.J., Haselein, C.R., Gatto, D.A. 2016. Physical and mechanical properties of fast-growing wood subjected to freeze-heat treatments. BioResources 11(4): 10378-10390.
- Mohared, A., Van Acker, J., Stevens, M. 2002. Effect of protective additives on leachability and efficacy of borate treated wood. IRG/WP 02-30290. IRG Secretariat, Stockholm, Sweden.
- Park, Y., Park, J.-H., Yang, S.-Y., Chung, H., Kim, H., Han, Y., Chang, Y.-S., Kim, K., Yeo, H. 2016. Evaluation of physico-mechanical properties and durability of Larix kaempferi wood heat-treated by superheated steam. Journal of the Korean Wood Science and Technology 44(5): 776-784. https://doi.org/10.5658/WOOD.2016.44.5.776
- Percin, O., Sofuoglu, S.D., Uzun, O. 2015. Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood. BioResources 10(3): 3963-3978.
- Priadi, T., Sholihah, M., Karlinasari, L. 2019. Water Absorption and Dimensional Stability of Heattreated Fast-growing Hardwoods. Journal of the Korean Wood Science and Technology 47(5): 567-578. https://doi.org/10.5658/wood.2019.47.5.567
- Romagnoli, M., Cavalli, D., Pernarella, R., Zanuttini, R., Togni, M. 2015. Physical and mechanical characteristics of poor-quality wood after heat treatment. IForest 8(6): 884-891. https://doi.org/10.3832/ifor1229-007
- Salman, S., Petrissans, A., Thevenon, M.F., Dumarcay, S., Perrin, D., Pollier, B., Gerardin, P. 2014. Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products 72(3): 355-365. https://doi.org/10.1007/s00107-014-0787-7
- Sandberg, D., Kutnar, A., Mantanis, G. 2017. Wood modification technologies-a review. iForest-Biogeosciences and Forestry 10(6): 895-908. https://doi.org/10.3832/ifor2380-010
- Simsek, H., Baysal, E., Peker, H. 2010. Some mechanical properties and decay resistance of wood impregnated with environmentally-friendly borates. Construction and Building Materials 24(11): 2279-2284. https://doi.org/10.1016/j.conbuildmat.2010.04.028
- Sites, W., Williams, L. 1997. Performance of borate treated wood coated with water repellants in Caribbean and southern US. Test structures. Proceedings Second International Conference on Wood Protection with Diffusible Preservation and Pesticides.
- Tarmian, A., Mastouri, A. 2019. Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. iForest-Biogeosciences and Forestry 12(1): 92-97. https://doi.org/10.3832/ifor2723-011
- Todaro, L., Rita, A., Negro, F., Moretti, N., Saracino, A., Zanuttini, R. 2015. Behavior of pubescent oak (Quercus pubescens Willd.) wood to different thermal treatments. IForest 8(6): 748-755. https://doi.org/10.3832/ifor1348-007
- Toker, H., Baysal, E., Simsek, H., Senel, A., Sonmez, A., Altinok, M., Ozcifci, A., Yapici, F. 2009. Effects of some environmentally-friendly fire-retardant boron compounds on modulus of rupture and modulus of elasticity of wood. Wood Research (Bratislava) 54(1): 77-88.
- Wang, Q., Wang, W., Winandy, J.E. 2005. Effects of a new GUP-B fire retardant on mechanical properties of Korean pine when exposed to elevated temperature. Forest Products Journal 55(12): 214.
- Yalinkilic, M.K., Tsunoda, K., Takahashi, M., Gezer, E.D., Dwianto, W., Nemoto, H. 1998. Enhancement of biological and physical properties of wood by boric acid-vinyl monomer combination treatment. Holzforschung 52(6): 667-672. https://doi.org/10.1515/hfsg.1998.52.6.667