References
- Abido, M.A. (2003), "Environmental/economic power dispatch using multiobjective evolutionary algorithms", Proceedings of the 2003 IEEE Power Engineering Society General Meeting, Toronto, Canada, July.
- Arikoglu, A. (2017), "Multi-objective optimal design of hybrid viscoelastic/composite sandwich beams by using the generalized differential quadrature method and the non-dominated sorting genetic algorithm II", Struct. Multidisciplin. Optimiz., 56(4), 885-901. https://doi.org/10.1007/s00158-017-1695-3.
- Demiroren, A. and Yilmaz, U. (2010), "Analysis of change in electric energy cost with using renewable energy sources in Gokceada, Turkey: An island example", Renew. Sust. Energy Rev., 14(1), 323-333. https://doi.org/10.1016/j.rser.2009.06.030.
- Dufo-Lopez, R. and Bernal-Agustin, J.L. (2008), "Multi-objective design of PV-wind-diesel-hydrogen-battery systems", Renew. Energy, 33(12), 2559-2572. https://doi.org/10.1016/j.renene.2008.02.027.
- Foroughi Nematollahi, A., Rahiminejad, A., Vahidi, B., Askarian, H. and Safaei, A. (2018), "A new evolutionary-analytical two-step optimization method for optimal wind turbine allocation considering maximum capacity", J. Renew. Sust. Energy, 10(4), 43312. https://doi.org/10.1063/1.5043403.
- Han, L., Zhou, R. and Deng, X. (2009), "An analytical method for DG placements considering reliability improvements", Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, Canada, July.
- Hossain, M., Mekhilef, S. and Olatomiwa, L. (2017), "Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia", Sustain. Cities Soc., 28, 358-366. https://doi.org/10.1016/j.scs.2016.10.008.
- Javadian, S.A.M. and Haghifam, M.R. (2008a), "Implementation of a new protection scheme on a real distribution system in presence of DG", Proceedings of the 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, New Delhi, India, October.
- Javadian, S.A.M. and Haghifam, M.R. (2008b), "Protection of distribution networks in presence of DG using distribution automation system capabilities", Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, Pennsylvania, U.S.A., July.
- Jing, W., Lai, C.H., Wong, W.S.H. and Wong, M.L.D. (2018), "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification", Appl. Energy, 224, 340-356. https://doi.org/10.1016/j.apenergy.2018.04.106.
- Kaabeche, A., Diaf, S. and Ibtiouen, R. (2017), "Firefly-inspired algorithm for optimal sizing of renewable hybrid system considering reliability criteria", Solar Energy, 155, 727-738. https://doi.org/10.1016/j.solener.2017.06.070.
- Kasaeian, A., Rahdan, P., Rad, M.A.V. and Yan, W.M. (2019), "Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: A case study", Energy Convers. Manage., 198, 111810. https://doi.org/10.1016/j.enconman.2019.111810.
- Kaur, R., Krishnasamy, V. and Kandasamy, N.K. (2018), "Optimal sizing of wind-PV-based DC microgrid for telecom power supply in remote areas", IET Renew. Power Gen., 12(7), 859-866. https://doi.org/10.1049/iet-rpg.2017.0480.
- Kayal, P. and Chanda, C.K. (2013), "Placement of wind and solar based DGs in distribution system for power loss minimization and voltage stability improvement", Int. J. Elect. Power Energy Syst., 53, 795-809. https://doi.org/10.1016/j.ijepes.2013.05.047.
- Khalilnejad, A., Sundararajan, A. and Sarwat, A.I. (2018), "Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm", J. Modern Power Syst. Clean Energy, 6(1), 40-49. https://doi.org/10.1007/s40565-017-0293-0.
- Koutroulis, E., Kolokotsa, D., Potirakis, A. and Kalaitzakis, K. (2006), "Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms", Solar Energy, 80(9), 1072-1088. https://doi.org/10.1016/j.solener.2005.11.002.
- Lampiao, A. J., Senjyu, T. and Yona, A. (2017), "Control of an autonomous hybrid microgrid as energy source for a small rural village", Int. J. Elect. Comput. Eng., (2088-8708), 7(1).
- Li, F., Xie, K. and Yang, J. (2015), "Optimization and analysis of a hybrid energy storage system in a small-scale standalone microgrid for remote area power supply (RAPS)", Energies, 8(6), 4802-4826. https://doi.org/10.3390/en8064802.
- Li, L., Yao, Z., You, S., Wang, C. H., Chong, C. and Wang, X. (2019), "Optimal design of negative emission hybrid renewable energy systems with biochar production", Appl. Energy, 243, 233-249. https://doi.org/10.1016/j.apenergy.2019.03.183.
- Liu, Y., Yu, S., Zhu, Y., Wang, D. and Liu, J. (2018), "Modeling, planning, application and management of energy systems for isolated areas: A review", Renew. Sust. Energy Rev., 82, 460-470. https://doi.org/10.1016/j.rser.2017.09.063.
- Ma, T., Yang, H., Lu, L. and Peng, J. (2015), "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization", Appl. Energy, 137, 649-659. https://doi.org/10.1016/j.apenergy.2014.06.005.
- Mahmoudimehr, J. and Shabani, M. (2018), "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran", Renew. Energy, 115, 238-251. https://doi.org/10.1016/j.renene.2017.08.054.
- Maleki, A., Pourfayaz, F. and Rosen, M.A. (2016), "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: a case study for Namin, Iran", Energy, 98, 168-180. https://doi.org/10.1016/j.energy.2015.12.133.
- Mehrpooya, M., Dehghani, H. and Moosavian, S.M.A. (2016), "Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system", J. Power Sources, 306, 107-123. https://doi.org/10.1016/j.jpowsour.2015.11.103.
- Moradi, M. and Mehrpooya, M. (2017), "Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower", Energy, 130, 530-543. https://doi.org/10.1016/j.energy.2017.05.001.
- Mostafaeipour, A., Arabi, F., Qolipour, M., Shamshirband, S. and Alavi, O. (2017), "Optimal location planning to install wind turbines for hydrogen production: A case study", Adv. Energy Res., 5(2), 147-177. https://doi.org/10.12989/eri.2017.5.2.147.
- Mostafaeipour, A., Sedaghat, A., Qolipour, M., Rezaei, M., Arabnia, H.R., Saidi-Mehrabad, M., Shamshirband, S. and Alavi, O. (2017), "Localization of solar-hydrogen power plants in the province of Kerman, Iran", Adv. Energy Res., 5(2), 179-205. https://doi.org/10.12989/eri.2017.5.2.179.
- Nematollahi, A.F., Rahiminejad, A. and Vahidi, B. (2017), "A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization", Appl. Soft Comput., 59, 596-621. https://doi.org/10.1016/j.asoc.2017.06.033.
- Nematollahi, A.F., Rahiminejad, A. and Vahidi, B. (2018), "A novel multi-objective optimization algorithm based on lightning attachment procedure optimization algorithm", Appl. Soft Comput., 75, 404-424. https://doi.org/10.1016/j.asoc.2018.11.032.
- Noguera, A.L.G., Castellanos, L.S.M., Lora, E.E.S. and Cobas, V.R.M. (2018), "Optimum design of a hybrid diesel-ORC/photovoltaic system using PSO: Case study for the city of Cujubim, Brazil", Energy, 142, 33-45. https://doi.org/10.1016/j.energy.2017.10.012.
- Olatomiwa, L., Mekhilef, S., Huda, A.S.N. and Ohunakin, O.S. (2015), "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria", Renew. Energy, 83, 435-446. https://doi.org/10.1016/j.renene.2015.04.057.
- Olatomiwa, L., Mekhilef, S., Huda, A.S.N. and Sanusi, K. (2015), "Techno-economic analysis of hybrid PV-diesel-battery and PV-wind-diesel-battery power systems for mobile BTS: The way forward for rural development", Energy Sci. Eng., 3(4), 271-285. https://doi.org/10.1002/ese3.71.
- Olatomiwa, L., Mekhilef, S., Ismail, M.S. and Moghavvemi, M. (2016), "Energy management strategies in hybrid renewable energy systems: A review", Renew. Sust. Energy Rev., 62, 821-835. https://doi.org/10.1016/j.rser.2016.05.040.
- Parida, A. and Chatterjee, D. (2018), "Stand-alone AC-DC microgrid-based wind-solar hybrid generation scheme with autonomous energy exchange topologies suitable for remote rural area power supply", Int. Trans. Elect. Energy Syst., 28(4), e2520. https://doi.org/10.1002/etep.2520.
- Puglia, G., Moroni, M., Fagnani, R. and Comodi, G. (2017), "A design approach of off-grid hybrid electric microgrids in isolated villages: A case study in Uganda", Energy Procedia, 105, 3089-3094. https://doi.org/10.1016/j.egypro.2017.03.646.
- Ramli, M.A.M., Bouchekara, H. and Alghamdi, A.S. (2018), "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm", Renew. Energy, 121, 400-411. https://doi.org/10.1016/j.renene.2018.01.058.
- Rezaei, R. and Ghofranfarid, M. (2018), "Rural households' renewable energy usage intention in Iran: Extending the unified theory of acceptance and use of technology", Renew. Energy, 122, 382-391. https://doi.org/10.1016/j.renene.2018.02.011.
- Sharafi, M., ElMekkawy, T.Y. and Bibeau, E.L. (2015), "Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio", Renew. Energy, 83, 1026-1042. https://doi.org/10.1016/j.renene.2015.05.022.
- Shi, Z., Wang, R. and Zhang, T. (2015), "Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach", Solar Energy, 118, 96-106. https://doi.org/10.1016/j.solener.2015.03.052.
- Suchitra, D., Jegatheesan, R. and Deepika, T.J. (2016), "Optimal design of hybrid power generation system and its integration in the distribution network", Int. J. Elect. Power Energy Syst., 82, 136-149. https://doi.org/10.1016/j.ijepes.2016.03.005.
- Tamizkar, R., Javadian, S.A.M. and Haghifam, M.R. (2009), "Distribution system reconfiguration for optimal operation of distributed generation", Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, June.
- Tasdighi, M., Ghasemi, H. and Rahimi-Kian, A. (2014), "Residential microgrid scheduling based on smart meters data and temperature dependent thermal load modeling", IEEE T. Smart Grid, 5(1), 349-357. https://doi.org/10.1109/TSG.2013.2261829.
- Tudu, B., Mandal, K.K. and Chakraborty, N. (2019), "Optimal design and development of PV-wind-battery based nano-grid system: a field-on-laboratory demonstration", Front. Energy, 13(2), 269-283. https://doi.org/10.1007/s11708-018-0573-z.
- Wang, C. and Nehrir, M.H. (2008), "Power management of a stand-alone wind/photovoltaic/fuel cell energy system", IEEE Trans. Energy Convers., 23(3), 957-967. https://doi.org/10.1109/TEC.2007.914200.
- Wang, Y., Wang, B., Chu, C.C., Pota, H. and Gadh, R. (2016), "Energy management for a commercial building microgrid with stationary and mobile battery storage", Energy Build., 116, 141-150. https://doi.org/10.1016/j.enbuild.2015.12.055.
- Wei, Z., Yang, H.X., Lin, L. and Fang, Z.H. (2007), "Optimum design of hybrid solar-wind-diesel power generation system using genetic algorithm", HKIE Trans, 14(4), 82-89. https://doi.org/10.1080/1023697X.2007.10668101.
- Wu, B., Maleki, A., Pourfayaz, F. and Rosen, M.A. (2018), "Optimal design of stand-alone reverse osmosis desalination driven by a photovoltaic and diesel generator hybrid system", Solar Energy, 163, 91-103. https://doi.org/10.1016/j.solener.2018.01.016.