Acknowledgement
Supported by : ELDORADO Institute
The authors acknowledge the support given to this investigation by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and the second author wishes to thank the CNPq for the PQ Research Grant. The authors also would like to extend their gratitude to EMBRACO, CAREL and NOVUS for offering the compressor, electronic expansion valve and data acquisition system, respectively. Finally, we thank the ELDORADO Institute for the support and contribution to the realization of this project.
References
- Aprea, C. and Mastrullo, R. (2002), "Experimental evaluation of electronic and thermostatic expansion valves performances using R22 and R407C", Appl. Therm. Eng., 22(2), 205-218. https://doi.org/10.1016/S1359-4311(01)00071-0.
- Aprea, C., Mastrullo, R. and Renno, C. (2004), "Fuzzy control of the compressor speed in a refrigeration plant", Int. J. Refrig., 27(6), 639-648. https://doi.org/10.1016/j.ijrefrig.2004.02.004.
- Aprea, C. and Renno, C. (2004), "An experimental analysis of a thermodynamic model of a vapour compression refrigeration plant on varying the compressor speed", Int. J. Energy Res., 28(6), 537-549. https://doi.org/10.1002/er.983.
- Atas, S., Aktas, M., Ceylan, I. and Dogan, H. (2017), "Development and analysis of a multi-evaporator cooling system with electronic expansion valves", Arab. J. Sci. Eng., 42, 4513-4521. https://doi.org/10.1007/s13369-017-2523-1
- Choi, J. and Kim, Y. (2003), "Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves", Energy, 28(2), 141-155. https://doi.org/10.1016/S0360-5442(02)00113-5.
- Dantas, T.S.S.S., Franco, I.C., Fileti, A.M.F. and Silva, F.V. (2017), "Dynamic linear modeling of a refrigeration process with electronic expansion valve actuator", Int. J. Refrig., 75, 311-321. https://doi.org/10.1016/j.ijrefrig.2017.01.014.
- Ekren, O., Sahin, S. and Isler, Y. (2010), "Comparison of different controllers for variable speed compressor and electronic expansion valve", Int. J. Refrig., 33(6), 1161-1168. https://doi.org/10.1016/J.IJREFRIG.2010.05.005.
- Filho, E.P.B., Garcia, F.E.M. and Mendoza, O.S.H. (2011), "Application of adaptive control in a refrigeration system to improve performance", J. Brazilian Soc. Mech. Sci. Eng., 33(2), 176-182. https://doi.org/10.1590/S1678-58782011000200008.
- Gill, J. and Singh, J. (2017), "Performance analysis of vapor compression refrigeration system using an adaptive neuro-fuzzy inference system", Int. J. Refrig., 82, 436-446. https://doi.org/10.1016/j.ijrefrig.2017.06.019.
- ISO 917 (1989), Testing of Refrigerant Compressors, 2ed, Geneve, Switzerland, pp. 31
- Kizilkan, O. (2011), "Thermodynamic analysis of variable speed refrigeration system using artificial neural networks", Expert Syst. Appl., 38(9), 11686-11692. https://doi.org/10.1016/j.eswa.2011.03.052.
- Koury, R.N.N., Machado, L. and Ismail, K.A.R. (2001), "Numerical simulation of a variable speed refrigeration system", Int. J. Refrig., 24(2), 192-200. https://doi.org/10.1016/S0140-7007(00)00014-1.
- Lago, T.G.S. (2016), "Estudo experimental e controle de um sistema de refrigeracao com compressor de velocidade variavel e valvula de expansao eletronica", Master Dissertation, Unicamp University, Campinas, Brazil.
- Lazzarin, R. and Noro, M. (2008), "Experimental comparison of electronic and thermostatic expansion valves performances in an air conditioning plant", Int. J. Refrig., 31(1), 113-118. https://doi.org/10.1016/j.ijrefrig.2007.09.004.
- Mamdani, E.H. (1974), "Application of fuzzy algorithms for control of simple dynamic plant", Proc. Inst. Electr. Eng., 121(12), 1585. https://doi.org/10.1049/piee.1974.0328.
- Park, C., Lee, S., Kang, H. and Kim, Y. (2007), "Experimentation and modeling of refrigerant flow through coiled capillary tubes", Int. J. Refrig., 30(7), 1168-1175. https://doi.org/10.1016/j.ijrefrig.2007.02.011.
- Shang, Y., Wu, A., Fang, X. and You, Y. (2016), "Dynamic simulation of electronic expansion valve controlled refrigeration system under different heat transfer conditions", Int. J. Refrig., 72, 41-52. https://doi.org/10.1016/j.ijrefrig.2016.07.020.
- Ma, S., Zhang, C., Chen, J. and Cheng, Z. (2005), "Experimental research on refrigerant mass flow coefficient of electronic expansion valve", Appl. Therm. Eng., 25(14-15), 2351-2366. https://doi.org/10.1016/j.applthermaleng.2004.12.005.
- Tassou, S. and Qureshi, T. (1998), "Comparative performance evaluation of positive displacement compressors in variable-speed refrigeration applications", Int. J. Refrig., 21(1), 29-41. https://doi.org/10.1016/S0140-7007(97)00082-0.
- Tesfay, M., Alsaleem, F., Arunasalam, P. and Rao, A. (2018), "Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization", Build. Environ., 133, 151-160. https://doi.org/10.1016/j.buildenv.2018.02.015.
- Xia, Y. and Deng, S. (2016), "The influences of the operating characteristics of an electronic expansion Valve (EEV) on the operational stability of an EEV controlled direct expansion air conditioning system", Int. J. Refrig., 69, 394-406. https://doi.org/10.1016/j.ijrefrig.2016.06.008.
- Zhang, C.L. (2005), "Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural network", Int. J. Refrig., 28(4), 506-514. https://doi.org/10.1016/j.ijrefrig.2004.11.004