DOI QR코드

DOI QR Code

The probabilistic estimation of inundation region using a multiple logistic regression analysis

다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출

  • Jung, Minkyu (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Jin-Guk (Department of Civil and Environmental Engineering, Sejong University) ;
  • Uranchimeg, Sumiya (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kwon, Hyun-Han (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2019.11.25
  • Accepted : 2020.01.16
  • Published : 2020.02.29

Abstract

The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.

도시화로 인한 불투수층 증가와 하천 주변 개발은 홍수 시 위험에 노출되는 재해요인의 증가뿐 아니라 피해의 파급을 발생시켜 홍수 관리 측면에서 어려움을 낳는다. 홍수 방재대책을 위해서는 도시지역에 분포하는 다양한 지표면 공간특성을 반영하여 침수가 예상되는 지역에 대한 파악이 우선시되어야 한다. 본 연구에서는 도시하천의 홍수 위험지역을 대상으로 확률적 홍수위험 평가가 수행되었다. 홍수와 관련된 지형적 영향요인인 고도, 경사, 유출곡선지수, 하천까지 거리를 예측변수로 하여 하천 주변 침수 예상지역을 설명하기 위해 모형의 학습데이터로 100년 빈도 홍수위험 지도가 사용되었다. 연구 대상 지역은 격자로 변환하여 Bayesian Logistic 회귀분석을 수행하여 각 격자별로 홍수영향요인이 침수 여부를 설명하는 모형을 구축하였다. 최종적으로 모형을 통해 대상 지역 전체에 대하여 침수위험도를 확률적으로 제시하였다.

Keywords

References

  1. Choi, Y.S., Kim, K.T., Kim, J.H., and Choi, C.K. (2014). "Development of flood hazard mapping method for local streams." KICT 2013-146. Korea Institute Of Construction Technology.
  2. Devia, G.K., Ganasri, B.P., and Dwarakish, G.S. (2015). "A review on hydrological models." Aquatic Procedia, Elsevier, Vol. 4, No 1, pp. 1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126
  3. Giovannettone, J., Copenhaver, T., Burns, M., and Choquette, S. (2018). "A statistical approach to mapping flood susceptibility in the lower Connecticut River Valley region." Water Resources Research, American Geophysical Union, Vol. 54, No. 10, pp. 7603-7618.
  4. Lee, M.J., Kang, J.E., and Jeon, S. (2012). "Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS." 2012 IEEE, Munich, Germany.
  5. Lee, M.S., Jang, D.H., and Lee, S. (2014). "An analysis of flooded areas by flood frequency for drawing a flood risk map: focusing on Nonsancheon and Noseongcheon basin." Journal of Climate Research, KU Climate Research Institute, Vol. 9, No. 2, pp. 153-166. https://doi.org/10.14383/cri.2014.9.2.153
  6. Ministry of Land, Transport and Maritime Affairs (MOLIT), Park, J. R., Dongbu Engineering (2008). Flood Hazard Map Master Plan Revision. Ministry of Land, Transport and Maritime Affairs (MOLIT)
  7. Ministry of Land, Transport and Maritime Affairs (MOLIT) (2008). Guidelines for Flood Hazard Map Production.
  8. Park, S., Hamm, S.Y., Jeon, H.T., and Kim, J. (2017). "Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS." Sustainability, MDPI, Vol. 9, No. 7, pp. 1157. https://doi.org/10.3390/su9071157
  9. Pouraghniaei, M.J. (2002). Effects of urbanization on quality and quantity of water in the watershed. Natural Resources Research Center of Semnan, Semnan Province, Iran.
  10. Pradhan, B., and Lee, S. (2010). "Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models." Environmental Earth Sciences, Springer, Vol. 60, No. 5, pp. 1037-1054. https://doi.org/10.1007/s12665-009-0245-8
  11. Rehabilitation of the Hydrologic Cycle in the Anyancheon Watershed Research Center (2007). Anyang stream basin status report. Ministry of Science and Technology (MOST).
  12. Song, B.G., Lee, T.S., and Park, K.H. (2014). "Assessment of flooding vulnerability based on GIS in urban area-focused on Changwon City." Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 4, pp. 129-143 (in Korean). https://doi.org/10.11108/kagis.2014.17.4.129
  13. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van Der Linde, A. (2002). "Bayesian measures of model complexity and fit." Journal of the royal statistical society: Series b (statistical methodology), Wiley-Blackwell Publishing Ltd., Vol. 64, No 4, pp. 583-639. https://doi.org/10.1111/1467-9868.00353
  14. Tehrany, M.S., Lee, M.J., Pradhan, B., Jebur, M.N., and Lee, S. (2014). "Flood susceptibility mapping using integrated bivariate and multivariate statistical models." Environmental Earth Sciences, Springer, Vol. 72, No. 10, pp. 4001-4015. https://doi.org/10.1007/s12665-014-3289-3
  15. White, M.D., and Greer, K.A. (2006). "The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California." Landscape and urban Planning, Elsevier, Vol. 74, No. 2, pp. 125-138. https://doi.org/10.1016/j.landurbplan.2004.11.015