Acknowledgement
This study was supported by BK21 PLUS and Research Institute for Veterinary Science, Seoul National University, Republic of Korea, and Agriculture and Food Research Initiative (AFRI) Competitive Grants No. 2018-67015-28287 from the US Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) to D.Y.
References
- Montgomery R. A form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol 1921;34:159-191. https://doi.org/10.1016/S0368-1742(21)80031-4
- Plowright W, Parker J, Peirce MA. African swine fever virus in ticks (Ornithodoros moubata, murray) collected from animal burrows in Tanzania. Nature 1969;221:1071-1073. https://doi.org/10.1038/2211071a0
- Sanchez-Cordon PJ, Montoya M, Reis AL, Dixon LK. African swine fever: a re-emerging viral disease threatening the global pig industry. Vet J 2018;233:41-48. https://doi.org/10.1016/j.tvjl.2017.12.025
- Arias M, Jurado C, Gallardo C, Fernandez-Pinero J, Sanchez-Vizcaino JM. Gaps in African swine fever: analysis and priorities. Transbound Emerg Dis 2018;65 Suppl 1:235-247.
- Gallardo C, Nieto R, Soler A, Pelayo V, Fernandez-Pinero J, Markowska-Daniel I, Pridotkas G, Nurmoja I, Granta R, Simon A, Perez C, Martin E, Fernandez-Pacheco P, Arias M. Assessment of African fever diagnostic techniques as a response to the epidemic outbreak in Eastern European Union countries: how to improve surveillance and control programs. J Clin Microbiol 2015;53:2555-2565. https://doi.org/10.1128/JCM.00857-15
- Sanchez-Vizcaino JM, Arias M. African swine fever. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW (eds.). Disease of Swine. 10th ed. pp. 396-404, Wiley-Blackwell, Ames, 2012.
- Bellini S, Rutili D, Guberti V. Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Vet Scand 2016;58:82. https://doi.org/10.1186/s13028-016-0264-x
- Gabriel C, Blome S, Malogolovkin A, Parilov S, Kolbasov D, Teifke JP, Beer M. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg Infect Dis 2011;17:2342-2345. https://doi.org/10.3201/eid1712.110430
- Blome S, Gabriel C, Dietze K, Breithaupt A, Beer M. High virulence of African swine fever virus Caucasus isolate in European wild boars of all ages. Emerg Infect Dis 2012;18:708.
- Penrith ML, Vosloo W. Review of African swine fever: transmission, spread and control. J S Afr Vet Assoc 2009;80:58-62. https://doi.org/10.4102/jsava.v80i2.172
- Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU. Epidemiology of African swine fever virus. Virus Res 2013;173:191-197. https://doi.org/10.1016/j.virusres.2012.10.030
- Yanez RJ, Rodriguez JM, Nogal ML, Yuste L, Enriquez C, Rodriguez JF, Vinuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology 1995;208:249-278. https://doi.org/10.1006/viro.1995.1149
- Rodriguez JM, Moreno LT, Alejo A, Lacasta A, Rodriguez F, Salas ML. Genome sequence of African swine fever virus BA71, the virulent parental strain of the nonpathogenic and tissue-culture adapted BA71V. PLoS One 2015;10:e0142889. https://doi.org/10.1371/journal.pone.0142889
- Dixon LK, Chapman DA, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2013;173:3-14. https://doi.org/10.1016/j.virusres.2012.10.020
- Almendral JM, Almazan F, Blasco R, Vinuela E. Multigene families in African swine fever virus: family 110. J Virol 1990;64:2064-2072. https://doi.org/10.1128/jvi.64.5.2064-2072.1990
- Gonzalez A, Calvo V, Almazan F, Almendral JM, Ramirez JC, de la Vega I, Blasco R, Vinuela E. Multigene families in African swine fever virus: family 360. J Virol 1990;64:2073-2081. https://doi.org/10.1128/jvi.64.5.2073-2081.1990
- Vydelingum S, Baylis SA, Bristow C, Smith GL, Dixon LK. Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. J Gen Virol 1993;74:2125-2130. https://doi.org/10.1099/0022-1317-74-10-2125
- Almazan F, Rodriguez JM, Andres G, Perez R, Vinuela E, Rodriguez JF. Transcriptional analysis of multigene family 110 of African swine fever virus. J Virol 1992;66:6655-6667. https://doi.org/10.1128/jvi.66.11.6655-6667.1992
- Yozawa T, Kutish GF, Afonso CL, Lu Z, Rock DL. Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology 1994;202:997-1002. https://doi.org/10.1006/viro.1994.1426
- Galindo I, Cuesta-Geijo MA, Hlavova K, Munoz-Moreno R, Barrado-Gil L, Dominguez J, Alonso C. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesteroldependent endocytosis. Virus Res 2015;200:45-55. https://doi.org/10.1016/j.virusres.2015.01.022
- Hernaez B, Guerra M, Salas ML, Andres G. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS Pathog 2016;12:e1005595. https://doi.org/10.1371/journal.ppat.1005595
- Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 2012;8:e1002754. https://doi.org/10.1371/journal.ppat.1002754
- Sanchez EG, Perez-Nunez D, Revilla Y. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines (Basel) 2017;5:42. https://doi.org/10.3390/vaccines5040042
- Sanchez-Torres C, Gomez-Puertas P, Gomez-del-Moral M, Alonso F, Escribano JM, Ezquerra A, Dominguez J. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol 2003;148:2307-2323. https://doi.org/10.1007/s00705-003-0188-4
- Popescu L, Gaudreault NN, Whitworth KM, Murgia MV, Nietfeld JC, Mileham A, Samuel M, Wells KD, Prather RS, Rowland RR. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology 2017;501:102-106. https://doi.org/10.1016/j.virol.2016.11.012
- Carrascosa AL, Sastre I, Vinuela E. African swine fever virus attachment protein. J Virol 1991;65:2283-2289. https://doi.org/10.1128/jvi.65.5.2283-2289.1991
- Carrascosa AL, Saastre I, Gonzalez P, Vinuela E. Localization of the African swine fever virus attachment protein P12 in the virus particle by immunoelectron microscopy. Virology 1993;193:460-465. https://doi.org/10.1006/viro.1993.1146
- Angulo A, Alcami A, Vinuela E. Virus-host interactions in African swine fever: the attachment to cellular receptors. Arch Virol Suppl 1993;7:169-183. https://doi.org/10.1007/978-3-7091-9300-6_14
- Carrascosa AL, Sastre I, Vinuela E. Production and purification of recombinant African swine fever virus attachment protein p12. J Biotechnol 1995;40:73-86. https://doi.org/10.1016/0168-1656(95)00035-O
- Rojo G, Garcia-Beato R, Vinuela E, Salas ML, Salas J. Replication of African swine fever virus DNA in infected cells. Virology 1999;257:524-536. https://doi.org/10.1006/viro.1999.9704
- Galindo I, Alonso C. African swine fever virus: a review. Viruses 2017;9:103. https://doi.org/10.3390/v9050103
- Rodriguez JM, Salas ML, Vinuela E. Intermediate class of mRNAs in African swine fever virus. J Virol 1996;70:8584-8589. https://doi.org/10.1128/jvi.70.12.8584-8589.1996
- Lopez-Otin C, Simon-Mateo C, Martinez L, Vinuela E. Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. J Biol Chem 1989;264:9107-9110. https://doi.org/10.1016/S0021-9258(18)60496-X
- Simon-Mateo C, Andres G, Almazan F, Vinuela E. Proteolytic processing in African swine fever virus: evidence for a new structural polyprotein, pp62. J Virol 1997;71:5799-5804. https://doi.org/10.1128/jvi.71.8.5799-5804.1997
- Martinez-Pomares L, Simon-Mateo C, Lopez-Otin C, Vinuela E. Characterization of the African swine fever virus structural protein p14.5: a DNA binding protein. Virology 1997;229:201-211. https://doi.org/10.1006/viro.1996.8434
- Salas ML, Andres G. African swine fever virus morphogenesis. Virus Res 2013;173:29-41. https://doi.org/10.1016/j.virusres.2012.09.016
- Zsak L, Sur JH, Burrage TG, Neilan JG, Rock DL. African swine fever virus (Asfv) multigene families 360 and 530 genes promote infected macrophage survival. Sci World J 2001;1:97. https://doi.org/10.1100/tsw.2001.202
- Moore DM, Zsak L, Neilan JG, Lu Z, Rock DL. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. J Virol 1998;72:10310-10315. https://doi.org/10.1128/jvi.72.12.10310-10315.1998
- Oliveros M, Garcia-Escudero R, Alejo A, Vinuela E, Salas ML, Salas J. African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. J Virol 1999;73:8934-8943. https://doi.org/10.1128/jvi.73.11.8934-8943.1999
- Salguero FJ, Sanchez-Cordon PJ, Sierra MA, Jover A, Nunez A, Gomez-Villamandos JC. Apoptosis of thymocytes in experimental African swine fever virus infection. Histol Histopathol 2004;19:77-84.
- Salguero FJ, Sanchez-Cordon PJ, Nunez A, Fernandez de Marco M, Gomez-Villamandos JC. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol 2005;132:289-302. https://doi.org/10.1016/j.jcpa.2004.11.004
- Hernaez B, Diaz-Gil G, Garcia-Gallo M, Ignacio Quetglas J, Rodriguez-Crespo I, Dixon L, Escribano JM, Alonso C. The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Lett 2004;569:224-228. https://doi.org/10.1016/j.febslet.2004.06.001
- Hurtado C, Granja AG, Bustos MJ, Nogal ML, Gonzalez de Buitrago G, de Yebenes VG, Salas ML, Revilla Y, Carrascosa AL. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology 2004;326:160-170. https://doi.org/10.1016/j.virol.2004.05.019
- Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M. Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis. J Virol 2017;91:e02228-16.
- Nogal ML, Gonzalez de Buitrago G, Rodriguez C, Cubelos B, Carrascosa AL, Salas ML, Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 2001;75:2535-2543. https://doi.org/10.1128/JVI.75.6.2535-2543.2001
- Anderson EC, Hutchings GH, Mukarati N, Wilkinson PJ. African swine fever virus infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Vet Microbiol 1998;62:1-15. https://doi.org/10.1016/S0378-1135(98)00187-4
- Oura CA, Powell PP, Anderson E, Parkhouse RM. The pathogenesis of African swine fever in the resistant bushpig. J Gen Virol 1998;79:1439-1443. https://doi.org/10.1099/0022-1317-79-6-1439
- Zsak L, Caler E, Lu Z, Kutish GF, Neilan JG, Rock DL. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J Virol 1998;72:1028-1035. https://doi.org/10.1128/jvi.72.2.1028-1035.1998
- Sussman MD, Lu Z, Kutish G, Afonso CL, Roberts P, Rock DL. Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence-associated gene of herpes simplex virus. J Virol 1992;66:5586-5589. https://doi.org/10.1128/jvi.66.9.5586-5589.1992
- Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, Balinsky CA, Gibb TR, Bean TJ, Zsak L, Rock DL. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 2004;78:1858-1864. https://doi.org/10.1128/JVI.78.4.1858-1864.2004
- Kay-Jackson PC, Goatley LC, Cox L, Miskin JE, Parkhouse RM, Wienands J, Dixon LK. The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J Gen Virol 2004;85:119-130. https://doi.org/10.1099/vir.0.19435-0
- Borca MV, Kutish GF, Afonso CL, Irusta P, Carrillo C, Brun A, Sussman M, Rock DL. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 1994;199:463-468. https://doi.org/10.1006/viro.1994.1146
- Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, Burrage TG, Rock DL. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 1998;72:2881-2889. https://doi.org/10.1128/jvi.72.4.2881-2889.1998
- Boinas FS, Hutchings GH, Dixon LK, Wilkinson PJ. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol 2004;85:2177-2187. https://doi.org/10.1099/vir.0.80058-0
- Gallardo C, Soler A, Rodze I, Nieto R, Cano-Gomez C, Fernandez-Pinero J, Arias M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound Emerg Dis 2019;66:1399-1404. https://doi.org/10.1111/tbed.13132
- Burmakina G, Malogolovkin A, Tulman ER, Zsak L, Delhon G, Diel DG, Shobogorov NM, Morgunov YP, Morgunov SY, Kutish GF, Kolbasov D, Rock DL. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J Gen Virol 2016;97:1670-1675. https://doi.org/10.1099/jgv.0.000490
- Monteagudo PL, Lacasta A, Lopez E, Bosch L, Collado J, Pina-Pedrero S, Correa-Fiz F, Accensi F, Navas MJ, Vidal E, Bustos MJ, Rodriguez JM, Gallei A, Nikolin V, Salas ML, Rodriguez F. BA71 delta CD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J Virol 2017;91:e01058-17.
- Salguero FJ, Ruiz-Villamor E, Bautista MJ, Sanchez-Cordon PJ, Carrasco L, Gomez-Villamandos JC. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Vet Immunol Immunopathol 2002;90:11-22. https://doi.org/10.1016/S0165-2427(02)00225-8
- Revilla Y, Callejo M, Rodriguez JM, Culebras E, Nogal ML, Salas ML, Vinuela E, Fresno M. Inhibition of nuclear factor κB activation by a virus-encoded IκB-like protein. J Biol Chem 1998;273:5405-5411. https://doi.org/10.1074/jbc.273.9.5405
- Neilan JG, Lu Z, Kutish GF, Zsak L, Lewis TL, Rock DL. A conserved African swine fever virus IκB homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine. Virology 1997;235:377-385. https://doi.org/10.1006/viro.1997.8693
- Gomez-Villamandos JC, Bautista MJ, Sanchez-Cordon PJ, Carrasco L. Pathology of African swine fever: the role of monocyte-mediated protective immune response. Virus Res 2013;173:140-149. https://doi.org/10.1016/j.virusres.2013.01.017
- Sanchez-Vizcaino JM, Mur L, Gomez-Villamandos JC, Carrasco L. An update on the epidemiology and pathology of African swine fever. J Comp Pathol 2015;152:9-21. https://doi.org/10.1016/j.jcpa.2014.09.003
- Gallardo C, Soler A, Nieto R, Sanchez MA, Martins C, Pelayo V, Carrascosa A, Revilla Y, Simon A, Briones V, Sanchez-Vizcaino JM, Arias M. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound Emerg Dis 2015;62:612-622. https://doi.org/10.1111/tbed.12431
- Kalenzi Atuhaire D, Ochwo S, Afayoa M, Norbert Mwiine F, Kokas I, Arinaitwe E, Ademun-Okurut RA, Boniface Okuni J, Nanteza A, Ayebazibwe C, Okedi L, Olaho-Mukani W, Ojok L. Epidemiological overview of African swine fever in Uganda (2001-2012). J Vet Med 2013;2013:949638. https://doi.org/10.1155/2013/949638
- Thomas LF, Bishop RP, Onzere C, Mcintosh MT, Lemire KA, de Glanville WA, Cook EA, Fevre EM. Evidence for the presence of African swine fever virus in an endemic region of western Kenya in the absence of any reported outbreak. BMC Vet Res 2016;12:192. https://doi.org/10.1186/s12917-016-0830-5
- Wardley RC, de M Andrade C, Black DN, de Castro Portugal FL, Enjuanes L, Hess WR, Mebus C, Ordas A, Rutili D, Sanchez Vizcaino J, Vigario JD, Wilkinson PJ, Moura Nunes JF, Thomson G. African swine fever virus. Brief review. Arch Virol 1983;76:73-90. https://doi.org/10.1007/BF01311692
- EFSA Panel on Animal Health and Welfare (AHAW). Scientific opinion on African swine fever. EFSA J 2010;8:1556.
- Botija CS. African swine fever. New developments. Rev Sci Tech Off Int Epiz 1982;1:1065-1094.
- Mur L, Boadella M, Martinez-Lopez B, Gallardo C, Gortazar C, Sanchez-Vizcaino JM. Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transbound Emerg Dis 2012;59:526-531. https://doi.org/10.1111/j.1865-1682.2012.01308.x
- Beltran-Alcrudo D, Lubroth J, Depner K, De La Rocque S. African swine fever in the Caucasus. FAO Empres Watch 2008:1-8.
- Gogin A, Gerasimov V, Malogolovkin A, Kolbasov D. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Res 2013;173:198-203. https://doi.org/10.1016/j.virusres.2012.12.007
- Kolbasov D, Titov I, Tsybanov S, Gogin A, Malogolovkin A. African swine fever virus, Siberia, Russia, 2017. Emerg Infect Dis 2018;24:796-798. https://doi.org/10.3201/eid2404.171238
- Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu HJ, Hu R. Emergence of African swine fever in China. Transbound Emerg Dis 2018;65:1482-1484. https://doi.org/10.1111/tbed.12989
- Feng Y, Zhao T, Nguyen T, Inui K, Ma Y, Nguyen TH, Nguyen VC, Liu D, Bui QA, To LT, Wang C, Tian K, Gao GF. Porcine respiratory and reproductive syndrome virus variants, Vietnam and China, 2007. Emerg Infect Dis 2008;14:1774-1776. https://doi.org/10.3201/eid1411.071676
- Vui DT, Tung N, Inui K, Slater S, Nilubol D. Complete genome sequence of porcine epidemic diarrhea virus in Vietnam. Genome Announc 2014;2:e00753-14.
- Wang WH, Lin CY, Chang Ishcol MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerg Microbes Infect 2019;8:1000-1002. https://doi.org/10.1080/22221751.2019.1636615
- Kim HJ, Cho KH, Lee SK, Kim DY, Nah JJ, Kim HJ, Kim HJ, Hwang JY, Sohn HJ, Choi JG, Kang HE, Kim YJ. Outbreak of African swine fever in South Korea, 2019. Transbound Emerg Dis 2020;67:473-475. https://doi.org/10.1111/tbed.13483
- Kim HJ, Lee MJ, Lee SK, Kim DY, Seo SJ, Kang HE, Nam HM. African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerg Infect Dis 2019;25:1231-1233. https://doi.org/10.3201/eid2506.181684
- Gaudreault NN, Richt JA. Subunit vaccine approaches for African swine fever virus. Vaccines (Basel) 2019;7:56. https://doi.org/10.3390/vaccines7020056
- Sanchez EG, Perez-Nunez D, Revilla Y. Development of vaccines against African swine fever virus. Virus Res 2019;265:150-155. https://doi.org/10.1016/j.virusres.2019.03.022
- Teklue T, Sun Y, Abld M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2020;67:529-542. https://doi.org/10.1111/tbed.13364
- Tlaxca JL, Ellis S, Remmele RL Jr. Live attenuated and inactivated viral vaccine formulation and nasal delivery: potential and challenges. Adv Drug Deliv Rev 2015;93:56-78. https://doi.org/10.1016/j.addr.2014.10.002
- Leitao A, Cartaxeiro C, Coelho R, Cruz B, Parkhouse RM, Portugal FC, Vigario JD, Martins CL. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol 2001;82:513-523. https://doi.org/10.1099/0022-1317-82-3-513
- Plotkin SA. Vaccines: the fourth century. Clin Vaccine Immunol 2009;16:1709-1719. https://doi.org/10.1128/CVI.00290-09
- Blome S, Gabriel C, Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 2014;32:3879-3882. https://doi.org/10.1016/j.vaccine.2014.05.051
- Borca MV, Irusta P, Carrillo C, Afonso CL, Burrage T, Rock DL. African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology 1994;201:413-418. https://doi.org/10.1006/viro.1994.1311
- Ruiz Gonzalvo F, Carnero ME, Caballero C, Martinez J. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am J Vet Res 1986;47:1249-1252.
- Zsak L, Onisk DV, Afonso CL, Rock DL. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognizing a 72-kDa viral protein. Virology 1993;196:596-602. https://doi.org/10.1006/viro.1993.1515
- Gomez-Puertas P, Oviedo JM, Rodriguez F, Coll J, Escribano JM. Neutralization susceptibility of African swine fever virus is dependent on the phospholipid composition of viral particles. Virology 1997;228:180-189. https://doi.org/10.1006/viro.1996.8391
- Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, Burrage TG, Rock DL. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol 1998;72:2881-2889. https://doi.org/10.1128/jvi.72.4.2881-2889.1998
- Alonso F, Dominguez J, Vinuela E, Revilla Y. African swine fever virus-specific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32). Virus Res 1997;49:123-130. https://doi.org/10.1016/S0168-1702(97)01459-7
- Leitao A, Malur A, Cornelis P, Martins CL. Identification of a 25-aminoacid sequence from the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system. J Virol Methods 1998;75:113-119. https://doi.org/10.1016/S0166-0934(98)00105-0
- Gomez-Puertas P, Rodriguez F, Oviedo JM, Ramiro-Ibanez F, Ruiz-Gonzalvo F, Alonso C, Escribano JM. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol 1996;70:5689-5694. https://doi.org/10.1128/jvi.70.8.5689-5694.1996
- Gomez-Puertas P, Rodriguez F, Oviedo JM, Brun A, Alonso C, Escribano JM. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 1998;243:461-471. https://doi.org/10.1006/viro.1998.9068
- Barderas MG, Rodriguez F, Gomez-Puertas P, Aviles M, Beitia F, Alonso C, Escribano JM. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Arch Virol 2001;146:1681-1691. https://doi.org/10.1007/s007050170056
- Neilan JG, Zsak L, Lu Z, Burrage TG, Kutish GF, Rock DL. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004;319:337-342. https://doi.org/10.1016/j.virol.2003.11.011
- Oura CA, Denyer MS, Takamatsu H, Parkhouse RM. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 2005;86:2445-2450. https://doi.org/10.1099/vir.0.81038-0
- Argilaguet JM, Perez-Martin E, Lopez S, Goethe M, Escribano JM, Giesow K, Keil GM, Rodriguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res 2013;98:61-65. https://doi.org/10.1016/j.antiviral.2013.02.005