DOI QR코드

DOI QR Code

Complete genome and phylogenetic analysis of bovine papillomavirus type 15 in Southern Xinjiang dairy cow

  • Hu, Jianjun (College of Animal Science, Tarim University) ;
  • Zhang, Wanqi (College of Animal Science, Tarim University) ;
  • Chauhan, Surinder Singh (Faculty of Veterinary and Agricultural Sciences, Dookie Campus, The University of Melbourne) ;
  • Shi, Changqing (College of Animal Science, Tarim University) ;
  • Song, Yumeng (Faculty of Veterinary and Agricultural Sciences, Dookie Campus, The University of Melbourne) ;
  • Zhao, Yubing (College of Animal Science, Tarim University) ;
  • Wang, Zhehong (College of Animal Science, Tarim University) ;
  • Cheng, Long (Faculty of Veterinary and Agricultural Sciences, Dookie Campus, The University of Melbourne) ;
  • Zhang, Yingyu (College of Animal Science, Tarim University)
  • 투고 : 2020.05.23
  • 심사 : 2020.08.03
  • 발행 : 2020.11.30

초록

Background: Bovine papilloma is a neoplastic disease caused by bovine papillomaviruses (BPVs), which were recently divided into 5 genera and at least 24 genotypes. Objectives: The complete genome sequence of BPV type 15 (BPV Aks-02), a novel putative BPV type from skin samples from infected cows in Southern Xinjiang China, was determined by collecting warty lesions, followed by DNA extraction and amplicon sequencing. Methods: DNA was analyzed initially by polymerase chain reaction (PCR) using the degenerate primers FAP59 and FAP64. The complete genome sequences of the BPV Aks-02 were amplified by PCR using the amplification primers and sequencing primers. Sequence analysis and phylogenetic analysis were performed using bio-informatic software. Results: The nucleotide sequence of the L1 open reading frame (ORF) of BPV Aks-02 was 75% identity to the L1 ORF of BPV-9 reference strain from GenBank. The complete genome consisted of 7,189 base pairs (G + C content of 42.50%) that encoded 5 early (E8, E7, E1, E2, and E4) and 2 late (L1 and L2) genes. The E7 protein contained a consensus CX2CX29CX2C zinc-binding domain and a LxCxE motif. Among the different members of this group, the percentages of the complete genome and ORFs (including 5 early and 2 late ORFs) sequence identity of BPV Aks-02 were closer to the genus Xipapillomavirus 1 of the Xipapillomavirus genus. Phylogenetic analysis and sequence similarities based on the L1 ORF of BPV Aks-02 revealed the same cluster. Conclusions: The results suggest that BPV type (BPV Aks-02) clustered with members of the Xipapillomavirus genus as BPV 15 and were closely related to Xipapillomavirus 1.

키워드

참고문헌

  1. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324(1):17-27. https://doi.org/10.1016/j.virol.2004.03.033
  2. Rector A, Van Ranst M. Animal papillomaviruses. Virology. 2013;445(1-2):213-223. https://doi.org/10.1016/j.virol.2013.05.007
  3. Bocaneti F, Altamura G, Corteggio A, Velescu E, Roperto F, Borzacchiello G. Bovine papillomavirus: new insights into an old disease. Transbound Emerg Dis. 2016;63(1):14-23. https://doi.org/10.1111/tbed.12222
  4. Corteggio A, Altamura G, Roperto F, Borzacchiello G. Bovine papillomavirus E5 and E7 oncoproteins in naturally occurring tumors: are two better than one? Infect Agent Cancer. 2013;8(1):1. https://doi.org/10.1186/1750-9378-8-1
  5. Ogawa T, Tomita Y, Okada M, Shinozaki K, Kubonoya H, Kaiho I, et al. Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin. J Gen Virol. 2004;85(Pt 8):2191-2197. https://doi.org/10.1099/vir.0.80086-0
  6. Dagalp SB, Dogan F, Farzani TA, Salar S, Bastan A. The genetic diversity of bovine papillomaviruses (BPV) from different papillomatosis cases in dairy cows in Turkey. Arch Virol. 2017;162(6):1507-1518. https://doi.org/10.1007/s00705-017-3258-8
  7. Santos EU, Silva MA, Pontes NE, Coutinho LC, Paiva SS, Castro RS, et al. Detection of different bovine papillomavirus types and co-infection in bloodstream of cattle. Transbound Emerg Dis. 2016;63(1):e103-e108. https://doi.org/10.1111/tbed.12237
  8. Ling Y, Zhang X, Qi G, Yang S, Jingjiao L, Shen Q, et al. Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows. Arch Virol. 2019;164(4):1059-1067. https://doi.org/10.1007/s00705-019-04158-4
  9. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70-79. https://doi.org/10.1016/j.virol.2010.02.002
  10. Daudt C, da Silva FRC, Streck AF, Weber MN, Mayer FQ, Cibulski SP, et al. How many papillomavirus species can go undetected in papilloma lesions? Sci Rep. 2016;6(1):36480. https://doi.org/10.1038/srep36480
  11. Daudt C, Da Silva FR, Lunardi M, Alves CB, Weber MN, Cibulski SP, et al. Papillomaviruses in ruminants: an update. Transbound Emerg Dis. 2018;65(5):1381-1395. https://doi.org/10.1111/tbed.12868
  12. Roperto S, Russo V, Corrado F, Munday JS, De Falco F, Roperto F. Detection of bovine Deltapapillomavirus DNA in peripheral blood of healthy sheep (Ovis aries). Transbound Emerg Dis. 2018;65(3):758-764. https://doi.org/10.1111/tbed.12800
  13. Daudt C, da Silva FR, Cibulski SP, Streck AF, Laurie RE, Munday JS, et al. Bovine papillomavirus 24: a novel member of the genus Xipapillomavirus detected in the Amazon region. Arch Virol. 2019;164(2):637-641. https://doi.org/10.1007/s00705-018-4092-3
  14. Bauermann FV, Joshi LR, Mohr KA, Kutish GF, Meier P, Chase C, et al. A novel bovine papillomavirus type in the genus Dyokappapapillomavirus. Arch Virol. 2017;162(10):3225-3228. https://doi.org/10.1007/s00705-017-3443-9
  15. da Silva FR, Cibulski SP, Daudt C, Weber MN, Guimaraes LL, Streck AF, et al. Novel bovine papillomavirus type discovered by rolling-circle amplification coupled with next-generation sequencing. PLoS One. 2016;11(9):e0162345. https://doi.org/10.1371/journal.pone.0162345
  16. Crespo SE, Lunardi M, Otonel RA, Headley SA, Alfieri AF, Alfieri AA. Genetic characterization of a putative new type of bovine papillomavirus in the Xipapillomavirus 1 species in a Brazilian dairy herd. Virus Genes. 2019;55(5):682-687. https://doi.org/10.1007/s11262-019-01694-8
  17. Ling Y, Zhang X, Qi G, Yang S, Li J, Shen Q, et al. Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows. Arch Virol. 2019;164(4):1059-1067. https://doi.org/10.1007/s00705-019-04158-4
  18. Zhu W, Yuan D, Norimine J, Gao N, Fan S, Du Y, et al. Teat papillomatosis in dairy herds: First detection of bovine papillomavirus type 10 in China. J Vet Med Sci. 2019;81(7):1063-1066. https://doi.org/10.1292/jvms.18-0449
  19. Pang F, Shi Q, Du L, Zhao T, Cheng Y, Jiao H, et al. Complete genome sequence of bovine papillomavirus genotype 13 from local yellow cattle in Hainan province, China. Genome Announc. 2014;2(6):e01087-e14.
  20. Peng H, Wu C, Li J, Li C, Chen Z, Pei Z, et al. Detection and genomic characterization of Bovine papillomavirus isolated from Chinese native cattle. Transbound Emerg Dis. 2019;66(6):2197-2203. https://doi.org/10.1111/tbed.13285
  21. He Z, Meng Q, Qiao J, Peng Y, Xie K, Liu Y, et al. Mixed nipple infections caused by variant of BPV3 and a putative new subtype of BPV in cattle. Transbound Emerg Dis. 2016;63(1):e140-e143. https://doi.org/10.1111/tbed.12238
  22. Zhang W, Hu J, Yan S, Huang Y, Xu J, Huang Z, et al. Sequence and structural analyses of the complete genome of bovine papillomavirus 2 genotype Aks-01 strain from skin samples of cows in Southern Xinjiang, China. Bing Du Xue Bao. 2015;31(4):370-378.
  23. Forslund O, Antonsson A, Nordin P, Stenquist B, Goran Hansson B. A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol. 1999;80(Pt 9):2437-2443. https://doi.org/10.1099/0022-1317-80-9-2437
  24. Lunardi M, de Camargo Tozato C, Alfieri AF, de Alcantara BK, Vilas-Boas LA, Otonel RA, et al. Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch Virol. 2016;161(6):1569-1577. https://doi.org/10.1007/s00705-016-2820-0
  25. Claus MP, Lunardi M, Alfieri AF, Ferracin LM, Fungaro MH, Alfieri AA. Identification of unreported putative new bovine papillomavirus types in Brazilian cattle herds. Vet Microbiol. 2008;132(3-4):396-401. https://doi.org/10.1016/j.vetmic.2008.05.026
  26. Hubert WG. Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol. 2005;79(10):5914-5922. https://doi.org/10.1128/JVI.79.10.5914-5922.2005
  27. Truchado DA, Williams RA, Benitez L. Natural history of avian papillomaviruses. Virus Res. 2018;252:58-67. https://doi.org/10.1016/j.virusres.2018.05.014
  28. Hatama S, Nobumoto K, Kanno T. Genomic and phylogenetic analysis of two novel bovine papillomaviruses, BPV-9 and BPV-10. J Gen Virol. 2008;89(Pt 1):158-163. https://doi.org/10.1099/vir.0.83334-0
  29. Lunardi M, Claus MP, Alfieri AA, Fungaro MH, Alfieri AF. Phylogenetic position of an uncharacterized Brazilian strain of bovine papillomavirus in the genus Xipapillomavirus based on sequencing of the L1 open reading frame. Genet Mol Biol. 2010;33(4):745-749. https://doi.org/10.1590/S1415-47572010005000091
  30. Munday JS. Bovine and human papillomaviruses: a comparative review. Vet Pathol. 2014;51(6):1063-1075. https://doi.org/10.1177/0300985814537837
  31. Rogers A, Waltke M, Angeletti PC. Evolutionary variation of papillomavirus E2 protein and E2 binding sites. Virol J. 2011;8(1):379. https://doi.org/10.1186/1743-422X-8-379
  32. Ma T, Zou N, Lin BY, Chow LT, Harper JW. Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc Natl Acad Sci U S A. 1999;96(2):382-387. https://doi.org/10.1073/pnas.96.2.382
  33. Zhu W, Dong J, Shimizu E, Hatama S, Kadota K, Goto Y, et al. Characterization of novel bovine papillomavirus type 12 (BPV-12) causing epithelial papilloma. Arch Virol. 2012;157(1):85-91. https://doi.org/10.1007/s00705-011-1140-7
  34. Garcia-Vallve S, Iglesias-Rozas JR, Alonso A, Bravo IG. Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region. BMC Evol Biol. 2006;6(1):20. https://doi.org/10.1186/1471-2148-6-20
  35. Ogawa T, Tomita Y, Okada M, Shirasawa H. Complete genome and phylogenetic position of bovine papillomavirus type 7. J Gen Virol. 2007;88(Pt 7):1934-1938. https://doi.org/10.1099/vir.0.82794-0
  36. Munday JS, Dittmer KE, Thomson NA, Hills SF, Laurie RE. Genomic characterisation of Felis catus papillomavirus type 5 with proposed classification within a new papillomavirus genus. Vet Microbiol. 2017;207:50-55. https://doi.org/10.1016/j.vetmic.2017.05.032