DOI QR코드

DOI QR Code

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui (The College of Animal Science and Veterinary Medicine, Henan Agricultural University) ;
  • Yuan, Yixin (The College of Animal Science and Veterinary Medicine, Henan Agricultural University) ;
  • Zhang, Chi (The College of Animal Science and Veterinary Medicine, Henan Agricultural University) ;
  • Zhou, Yong (Key Laboratory for Animal-derived Food Safety of Henan Province) ;
  • Song, Yue (Key Laboratory for Animal-derived Food Safety of Henan Province) ;
  • Wei, Zhanyong (The College of Animal Science and Veterinary Medicine, Henan Agricultural University) ;
  • Zhang, Gaiping (The College of Animal Science and Veterinary Medicine, Henan Agricultural University)
  • 투고 : 2020.01.13
  • 심사 : 2020.03.27
  • 발행 : 2020.05.31

초록

Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

키워드

과제정보

We thank Professor Hui Hu from Henan Agricultural University for revising the manuscript.

참고문헌

  1. Tamosiunas PL, Petraityte-Burneikiene R, Lasickiene R, Akatov A, Kundrotas G, Sereika V, Lelesius R, Zvirbliene A, Sasnauskas K. Generation of recombinant porcine parvovirus virus-like particles in Saccharomyces cerevisiae and development of virus-specific monoclonal antibodies. J Immunol Res. 2014;2014(1):573531.
  2. Mayr A, Bachmann PA, Siegl G, Mahnel H, Sheffy BE. Characterization of a small porcine DNA virus. Arch Gesamte Virusforsch. 1968;25(1):38-51. https://doi.org/10.1007/BF01243088
  3. Wolf VH, Menossi M, Mourao GB, Gatti MS, Gmr MR. Molecular basis for porcine parvovirus detection in dead fetuses. Genet Mol Res. 2008;7(2):509-517. https://doi.org/10.4238/vol7-2gmr440
  4. Soares RM, Durigon EL, Bersano JG, Richtzenhain LJ. Detection of porcine parvovirus DNA by the polymerase chain reaction assay using primers to the highly conserved nonstructural protein gene, NS-1. J Virol Methods. 1999;78(1-2):191-198. https://doi.org/10.1016/S0166-0934(98)00177-3
  5. Xu YG, Cui LC, Wang HW, Huo GC, Li SL. Characterization of the capsid protein VP2 gene of a virulent strain NE/09 of porcine parvovirus isolated in China. Res Vet Sci. 2013;94(2):219-224. https://doi.org/10.1016/j.rvsc.2012.09.003
  6. Hanson ND, Rhode SL 3rd. Parvovirus NS1 stimulates P4 expression by interaction with the terminal repeats and through DNA amplification. J Virol. 1991;65(8):4325-4333. https://doi.org/10.1128/jvi.65.8.4325-4333.1991
  7. Anouja F, Wattiez R, Mousset S, Caillet-Fauquet P. The cytotoxicity of the parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins. J Virol. 1997;71(6):4671-4678. https://doi.org/10.1128/jvi.71.6.4671-4678.1997
  8. Rhode SL 3rd. Both excision and replication of cloned autonomous parvovirus DNA require the NS1 (rep) protein. J Virol. 1989;63(10):4249-4256. https://doi.org/10.1128/jvi.63.10.4249-4256.1989
  9. Hatada EN, Krappmann D, Scheidereit C. NF-kappaB and the innate immune response. Curr Opin Immunol. 2000;12(1):52-58. https://doi.org/10.1016/S0952-7915(99)00050-3
  10. Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21(2):223-244. https://doi.org/10.1038/cr.2011.13
  11. Haddad JJ, Abdel-Karim NE. NF-κB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol. 2011;271(1):5-14. https://doi.org/10.1016/j.cellimm.2011.06.021
  12. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, Castano-Rodriguez C, Perlman S, Enjuanes L. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88(2):913-924. https://doi.org/10.1128/JVI.02576-13
  13. Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, Pompeo F, Gagliardo C, Merendino AM, Gjomarkaj M. IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2011;128(3):635-645.e1. https://doi.org/10.1016/j.jaci.2011.03.045
  14. Jiang G, Dandekar S. Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. AIDS Res Hum Retroviruses. 2015;31(1):4-12. https://doi.org/10.1089/AID.2014.0199
  15. Iwasaki A. A virological view of innate immune recognition. Annu Rev Microbiol. 2012;66(66):177-196. https://doi.org/10.1146/annurev-micro-092611-150203
  16. Santoro MG, Rossi A, Amici C. NF-kappaB and virus infection: who controls whom. EMBO J. 2003;22(11):2552-2560. https://doi.org/10.1093/emboj/cdg267
  17. Jenkins KA, Mansell A. TIR-containing adaptors in toll-like receptor signalling. Cytokine. 2010;49(3):237-244. https://doi.org/10.1016/j.cyto.2009.01.009
  18. O'Neill LA, Golenbock D, Bowie AG. The history of toll-like receptors - redefining innate immunity. Nat Rev Immunol. 2013;13(6):453-460. https://doi.org/10.1038/nri3446
  19. Wang Y, Zhang P, Liu Y, Cheng G. TRAF-mediated regulation of immune and inflammatory responses. Sci China Life Sci. 2010;53(2):159-168. https://doi.org/10.1007/s11427-010-0050-3
  20. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7-11. https://doi.org/10.1172/JCI11830
  21. Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol. 2008;89(Pt 1):1-47. https://doi.org/10.1099/vir.0.83391-0
  22. Chehadeh W, Alkhabbaz M. Differential TLR7-mediated expression of proinflammatory and antiviral cytokines in response to laboratory and clinical enterovirus strains. Virus Res. 2013;174(1-2):88-94. https://doi.org/10.1016/j.virusres.2013.03.006
  23. Zipris D, Lien E, Nair A, Xie JX, Greiner DL, Mordes JP, Rossini AA. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol. 2007;178(2):693-701. https://doi.org/10.4049/jimmunol.178.2.693
  24. Sieben M, Schafer P, Dinsart C, Galle PR, Moehler M. Activation of the human immune system via toll-like receptors by the oncolytic parvovirus H-1. Int J Cancer. 2013;132(11):2548-2556. https://doi.org/10.1002/ijc.27938
  25. Hsu GJ, Tzang BS, Tsai CC, Chiu CC, Huang CY, Hsu TC. Effects of human parvovirus B19 on expression of defensins and toll-like receptors. Chin J Physiol 2011;54(5):367-376.
  26. Zhou Y, Jin XH, Jing YX, Song Y, He XX, Zheng LL, Wang YB, Wei ZY, Zhang GP. Porcine parvovirus infection activates inflammatory cytokine production through toll-like receptor 9 and NF-κB signaling pathways in porcine kidney cells. Vet Microbiol. 2017;207:56-62. https://doi.org/10.1016/j.vetmic.2017.05.030
  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  28. Cao L, Chen J, Wei Y, Shi H, Zhang X, Yuan J, Shi D, Liu J, Zhu X, Wang X, Cui S, Feng L. Porcine parvovirus induces activation of NF-κB signaling pathways in PK-15 cells mediated by toll-like receptors. Mol Immunol. 2017;85:248-255. https://doi.org/10.1016/j.molimm.2016.12.002
  29. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460-469. https://doi.org/10.1016/j.molmed.2007.09.002