DOI QR코드

DOI QR Code

Serum proteomics analysis of feline mammary carcinoma based on label-free and PRM techniques

  • Zheng, Jia-San (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wei, Ren-Yue (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wang, Zheng (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Zhu, Ting-Ting (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Ruan, Hong-Ri (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wei, Xue (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Hou, Kai-Wen (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wu, Rui (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University)
  • Received : 2019.10.31
  • Accepted : 2020.03.09
  • Published : 2020.05.31

Abstract

Background: Feline mammary carcinoma is the third most common cancer that affects female cats. Objectives: The purpose of this study was to screen differential serum proteins in feline and clarify the relationship between them and the occurrence of feline mammary carcinoma. Methods: Chinese pastoral cats were used as experimental animals. Six serum samples from cats with mammary carcinoma (group T) and six serum samples from healthy cats (group C) were selected. Differential protein analysis was performed using a Label-free technique, while parallel reaction monitoring (PRM) was performed to verify the screened differential proteins. Results: A total of 82 differential proteins were detected between group T and group C, of which 55 proteins were down regulated and 27 proteins were up regulated. Apolipoprotein A-I, Apolipoprotein A-II (ApoA-II), Apolipoprotein B (ApoB), Apolipoprotein C-III (ApoC-III), coagulation factor V, coagulation factor X, C1q, albumen (ALB) were all associated with the occurrence of feline mammary carcinoma. Differential proteins were involved in a total of 40 signaling pathways, among which the metabolic pathways associated with feline mammary carcinoma were the complement and coagulation cascade and cholesterol metabolism. According to the Label-free results, ApoB, ApoC-III, ApoA-II, FN1, an uncharacterized protein, and ALB were selected for PRM target verification. The results were consistent with the trend of the label-free. Conclusions: This experimen is the first to confirm ApoA-II and ApoB maybe new feline mammary carcinoma biomarkers and to analyze their mechanisms in the development of such carcinoma in feline.

Keywords

Acknowledgement

Mass spectrometric data analysis was performed by Beijing Qinglian Biotech Co., Ltd.

References

  1. Zappulli V, Rasotto R, Caliari D, Mainenti M, Pena L, Goldschmidt MH, Kiupel M. Prognostic evaluation of feline mammary carcinomas: a review of the literature. Vet Pathol. 2015;52(1):46-60. https://doi.org/10.1177/0300985814528221
  2. Weijer K, Hart A A M. Prognostic factors in feline mammary carcinoma. J Natl Cancer Inst 1983;70(4):709-716.
  3. Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, Tienda SM, Nahotko DA, Li G, Blazenovic I, Lastra RR, Curtis M, Yamada SD, Perets R, McGregor SM, Andrade J, Fiehn O, Moellering RE, Mann M, Lengyel E. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;569(7758):723-728. https://doi.org/10.1038/s41586-019-1173-8
  4. Marx H, Minogue CE, Jayaraman D, Richards AL, Kwiecien NW, Siahpirani AF, Rajasekar S, Maeda J, Garcia K, Del Valle-Echevarria AR, Volkening JD, Westphall MS, Roy S, Sussman MR, Ane JM, Coon JJ. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat Biotechnol. 2016;34(11):1198-1205. https://doi.org/10.1038/nbt.3681
  5. Cretu D, Prassas I, Saraon P, Batruch I, Gandhi R, Diamandis EP, Chandran V. Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin Proteomics. 2014;11(1):27. https://doi.org/10.1186/1559-0275-11-27
  6. Navarro P, Kuharev J, Gillet LC, Bernhardt OM, MacLean B, Rost HL, Tate SA, Tsou CC, Reiter L, Distler U, Rosenberger G, Perez-Riverol Y, Nesvizhskii AI, Aebersold R, Tenzer S. A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotechnol. 2016;34(11):1130-1136. https://doi.org/10.1038/nbt.3685
  7. Fu J, Tang J, Wang Y, Cui X, Yang Q, Hong J, Li X, Li S, Chen Y, Xue W, Zhu F. Discovery of the consistently well-performed analysis chain for SWATH-MS based pharmacoproteomic quantification. Front Pharmacol. 2018;9:681. https://doi.org/10.3389/fphar.2018.00681
  8. Tang J, Zhang Y, Fu J, Wang Y, Li Y, Yang Q, Yao L, Xue W, Zhu F. Computational advances in the label-free quantification of cancer proteomics data. Curr Pharm Des. 2018;24(32):3842-3858.
  9. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics. 2012;11(12):1709-1723. https://doi.org/10.1074/mcp.O112.019802
  10. Kim HJ, Lin D, Lee HJ, Li M, Liebler DC. Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays. Mol Cell Proteomics. 2016;15(2):682-691. https://doi.org/10.1074/mcp.O115.056713
  11. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 2012;11(11):1475-1488. https://doi.org/10.1074/mcp.O112.020131
  12. Rauniyar N. Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci. 2015;16(12):28566-28581. https://doi.org/10.3390/ijms161226120
  13. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock GThe Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25-29. https://doi.org/10.1038/75556
  14. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  15. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. GO:TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710-3715. https://doi.org/10.1093/bioinformatics/bth456
  16. Pussinen PJ, Karten B, Wintersperger A, Reicher H, McLean M, Malle E, Sattler W. The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake. Biochem J. 2000;349(Pt 2):559-566. https://doi.org/10.1042/bj3490559
  17. Goncalves A, Esterni B, Bertucci F, Sauvan R, Chabannon C, Cubizolles M, Bardou VJ, Houvenaegel G, Jacquemier J, Granjeaud S, Meng XY, Fung ET, Birnbaum D, Maraninchi D, Viens P, Borg JP. Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. Oncogene. 2006;25(7):981-989. https://doi.org/10.1038/sj.onc.1209131
  18. Li X, Liu ZL, Wu YT, Wu H, Dai W, Arshad B, Xu Z, Li H, Wu KN, Kong LQ. Status of lipid and lipoprotein in female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018;17(1):91. https://doi.org/10.1186/s12944-018-0745-1
  19. Chung L, Moore K, Phillips L, Boyle FM, Marsh DJ, Baxter RC. Novel serum protein biomarker panel revealed by mass spectrometry and its prognostic value in breast cancer. Breast Cancer Res. 2014;16(3):R63. https://doi.org/10.1186/bcr3676
  20. Mangaraj M, Nanda R, Panda S. Apolipoprotein A-I: a molecule of diverse function. Indian J Clin Biochem. 2016;31(3):253-259. https://doi.org/10.1007/s12291-015-0513-1
  21. Hachem H, Favre G, Ghalim N, Puchois P, Fruchart JC, Soula G. Quantitative abnormalities of lipoprotein particles in multiple myeloma. J Clin Chem Clin Biochem. 1987;25(10):675-679.
  22. Humphries JM, Penno MA, Weiland F, Klingler-Hoffmann M, Zuber A, Boussioutas A, Ernst M, Hoffmann P. Identification and validation of novel candidate protein biomarkers for the detection of human gastric cancer. Biochim Biophys Acta. 2014;1844(5):1051-1058. https://doi.org/10.1016/j.bbapap.2014.01.018
  23. Julovi SM, Xue A, Thanh LE TN, Gill AJ, Bulanadi JC, Patel M, Waddington LJ, Rye KA, Moghaddam MJ, Smith RC. Apolipoprotein A-II plus lipid emulsion enhance cell growth via SR-B1 and target pancreatic cancer in vitro and in vivo. PLoS One. 2016;11(3):e0151475. https://doi.org/10.1371/journal.pone.0151475
  24. Honda K, Kobayashi M, Okusaka T, Rinaudo JA, Huang Y, Marsh T, Sanada M, Sasajima Y, Nakamori S, Shimahara M, Ueno T, Tsuchida A, Sata N, Ioka T, Yasunami Y, Kosuge T, Miura N, Kamita M, Sakamoto T, Shoji H, Jung G, Srivastava S, Yamada T. Plasma biomarker for detection of early stage pancreatic cancer and risk factors for pancreatic malignancy using antibodies for apolipoprotein-AII isoforms. Sci Rep. 2015;5(1):15921. https://doi.org/10.1038/srep15921
  25. Martin LJ, Melnichouk O, Huszti E, Connelly PW, Greenberg CV, Minkin S, Boyd NF. Serum lipids, lipoproteins, and risk of breast cancer: a nested case-control study using multiple time points. J Natl Cancer Inst. 2015;107(5):djv032. https://doi.org/10.1093/jnci/djv032
  26. Melvin JC, Seth D, Holmberg L, Garmo H, Hammar N, Jungner I, Walldius G, Lambe M, Wigertz A, Van Hemelrijck M. Lipid profiles and risk of breast and ovarian cancer in the Swedish AMORIS study. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1381-1384. https://doi.org/10.1158/1055-9965.EPI-12-0188
  27. Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M, Manjer J, Melander O. Apolipoproteins, lipids and risk of cancer. Int J Cancer. 2016;138(11):2648-2656. https://doi.org/10.1002/ijc.30013
  28. Tamimi RM, Byrne C, Colditz GA, Hankinson SE. Endogenous hormone levels, mammographic density, and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2007;99(15):1178-1187. https://doi.org/10.1093/jnci/djm062
  29. Cohen M, Yossef R, Erez T, Kugel A, Welt M, Karpasas MM, Bones J, Rudd PM, Taieb J, Boissin H, Harats D, Noy K, Tekoah Y, Lichtenstein RG, Rubin E, Porgador A. Serum apolipoproteins C-I and C-III are reduced in stomach cancer patients: results from MALDI-based peptidome and immuno-based clinical assays. PLoS One. 2011;6(1):e14540. https://doi.org/10.1371/journal.pone.0014540
  30. Chen J, Anderson M, Misek DE, Simeone DM, Lubman DM. Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A. 2007;1162(2):117-125. https://doi.org/10.1016/j.chroma.2007.03.096
  31. Honda K, Okusaka T, Felix K, Nakamori S, Sata N, Nagai H, Ioka T, Tsuchida A, Shimahara T, Shimahara M, Yasunami Y, Kuwabara H, Sakuma T, Otsuka Y, Ota N, Shitashige M, Kosuge T, Buchler MW, Yamada T. Altered plasma apolipoprotein modifications in patients with pancreatic cancer: protein characterization and multi-institutional validation. PLoS One. 2012;7(10):e46908. https://doi.org/10.1371/journal.pone.0046908
  32. Shi J, Yang H, Duan X, Li L, Sun L, Li Q, Zhang J. Apolipoproteins as differentiating and predictive markers for assessing clinical outcomes in patients with small cell lung cancer. Yonsei Med J. 2016;57(3):549-556. https://doi.org/10.3349/ymj.2016.57.3.549
  33. Fan Y, Shi L, Liu Q, Dong R, Zhang Q, Yang S, Fan Y, Yang H, Wu P, Yu J, Zheng S, Yang F, Wang J. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol Cancer. 2009;8(1):79. https://doi.org/10.1186/1476-4598-8-79
  34. Kaur A, Sultan SH, Murugaiah V, Pathan AA, Alhamlan FS, Karteris E, Kishore U. Human C1q induces apoptosis in an ovarian cancer cell line via tumor necrosis factor pathway. Front Immunol. 2016;7:599.
  35. Kishore U, Gaboriaud C, Waters P, Shrive AK, Greenhough TJ, Reid KB, Sim RB, Arlaud GJ. C1q and tumor necrosis factor superfamily: modularity and versatility. Trends Immunol. 2004;25(10):551-561. https://doi.org/10.1016/j.it.2004.08.006
  36. Haruki K, Shiba H, Shirai Y, Horiuchi T, Iwase R, Fujiwara Y, Furukawa K, Misawa T, Yanaga K. The C-reactive protein to albumin ratio predicts long-term outcomes in patients with pancreatic cancer after pancreatic resection. World J Surg. 2016;40(9):2254-2260. https://doi.org/10.1007/s00268-016-3491-4
  37. Liu Z, Jin K, Guo M, Long J, Liu L, Liu C, Xu J, Ni Q, Luo G, Yu X. Prognostic value of the CRP/Alb ratio, a novel inflammation-based score in pancreatic cancer. Ann Surg Oncol. 2017;24(2):561-568.
  38. Liu JX, Li A, Zhou LY, Liu XF, Wei ZH, Wang XZ, Ying HQ. Significance of combined preoperative serum Alb and dNLR for diagnosis of pancreatic cancer. Future Oncol. 2018;14(3):229-239. https://doi.org/10.2217/fon-2017-0339
  39. Matsuda S, Niihara M, Tsubosa Y, Sato H, Takebayashi K, Kawamorita K, Mori K, Tsushima T, Yasui H, Takeuchi H, Kitagawa Y. Clinical significance of postoperative recovery of serum albumin levels in patients with esophageal cancer who underwent transthoracic esophagectomy. Surg Today. 2016;46(10):1138-1145. https://doi.org/10.1007/s00595-015-1300-6