DOI QR코드

DOI QR Code

Widespread Occurrence of a CYP51A Pseudogene in Calonectria pseudonaviculata

  • Stravoravdis, Stefanos (Biology Department, Eastern Connecticut State University) ;
  • LeBlanc, Nicholas R. (Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service) ;
  • Marra, Robert E. (Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station) ;
  • Crouch, Jo Anne (Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service) ;
  • Hulvey, Jonathan P. (Biology Department, Eastern Connecticut State University)
  • Received : 2019.08.08
  • Accepted : 2019.10.14
  • Published : 2020.02.29

Abstract

Calonectria pseudonaviculata and C. henricotiae are two closely related fungal species responsible for boxwood blight disease of ornamental shrubs (Buxus spp.) in the U.S. and Europe. A previous study has shown isolates of the latter species, which is restricted to Europe, to be less sensitive to tetraconazole, an azole fungicide. In this study, we have analyzed the CYP51 paralogs for polymorphism in 26 genomes, representing geographically disparate populations of C. pseudonaviculata (n = 19) and C. henricotiae (n = 7), from the U.S., Europe, Asia, and New Zealand. The presence of a CYP51A pseudogene and lack of a functional CYP51A paralog in all C. pseudonaviculata genomes examined is a novel discovery for fungi and could have implications for the evolution of resistance to antifungal chemicals.

Keywords

References

  1. Daughtrey ML. Boxwood blight: threat to ornamentals. Annu Rev Phytopathol. 2019;57(1):189-209. https://doi.org/10.1146/annurev-phyto-082718-100156
  2. Leblanc N, Salgado-Salazar C, Crouch JA. Boxwood blight: an ongoing threat to ornamental and native boxwood. Appl Microbiol Biotechnol. 2018;102(10):4371-4380. https://doi.org/10.1007/s00253-018-8936-2
  3. Gehesquiere B, Crouch J, Marra R, et al. Characterization and taxonomic re-assessment of the box blight pathogen Calonectria pseudonaviculata, introducing Calonectria henricotiae sp. Plant Pathol. 2016;65(1):37-52. https://doi.org/10.1111/ppa.12401
  4. LaMondia JA. Fungicide efficacy against Calonectria pseudonaviculata, causal agent of boxwood blight. Plant Dis. 2014;98(1):99-102. https://doi.org/10.1094/PDIS-04-13-0373-RE
  5. LaMondia JA. Management of Calonectria pseudonaviculata in boxwood with fungicides and less susceptible host species and varieties. Plant Dis. 2015;99(3):363-369. https://doi.org/10.1094/PDIS-02-14-0217-RE
  6. Becher R, Weihmann F, Deising HB, et al. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics. 2011;12(1):52. https://doi.org/10.1186/1471-2164-12-52
  7. Hawkins NJ, Cools HJ, Sierotzki H, et al. Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol. 2014;31(7):1793-1802. https://doi.org/10.1093/molbev/msu134
  8. Chen FP, Fan JR, Zhou T, et al. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants. Plant Dis. 2012;96(3):416-422. https://doi.org/10.1094/PDIS-06-11-0495
  9. Hulvey J, Popko JT, Jr., Sang H, et al. Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Appl Environ Microbiol. 2012;78(18):6674-6682. https://doi.org/10.1128/AEM.00417-12
  10. Cools HJ, Hawkins NJ, Fraaije BA. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol. 2013;62:36-42. https://doi.org/10.1111/ppa.12128
  11. Zheng B, Yan L, Liang W, et al. Paralogous Cyp51s mediate the differential sensitivity of Fusarium oxysporum to sterol demethylation inhibitors. Pest Manag Sci. 2019;75:396-404. https://doi.org/10.1002/ps.5127
  12. Hulvey JP, Marra RE. Evidence for CYP51-mediated reduced sensitivity to triazole fungicides in Calonectria henricotiae. Phytopathology. 2018;108(10):24.
  13. Brunner PC, Stefansson TS, Fountaine J, et al. A global analysis of CYP51 diversity and azole sensitivity in Rhynchosporium commune. Phytopathology. 2016;106(4):355-361. https://doi.org/10.1094/PHYTO-07-15-0158-R
  14. Salgado-Salazar C, Shishkoff N, LeBlanc N, et al. Coccinonectria pachysandricola, causal agent of a new foliar blight disease of Sarcococca hookeriana. Plant Dis. 2019;103(6):1337-1346. https://doi.org/10.1094/PDIS-09-18-1676-RE
  15. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-12. https://doi.org/10.14806/ej.17.1.200
  16. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-477. https://doi.org/10.1089/cmb.2012.0021
  17. Crouch JA, Malapi-Wight M, Rivera Y, et al. Genome datasets for Calonectra henricotiae and C. pseudonaviculata causing boxwood blight disease and related fungal species. Ag Data Commons. 2017. https://doi.org/l0.15482/USDA.ADC/1410184
  18. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33(Web Server):W465-W467. https://doi.org/10.1093/nar/gki458
  19. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  20. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol.. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  21. Madeira F, Mi Park Y, Lee J, et al. The EMBLEBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-W641. https://doi.org/10.1093/nar/gkz268
  22. Kim D, Lim Y-R, Ohk SO, et al. Functional expression and characterization of CYP51 from dandruffcausing Malassezie globosa. FEMS Yeast Res. 2011;11(1):80-87. https://doi.org/10.1111/j.1567-1364.2010.00692.x
  23. Hargrove TY, Wawrzak Z, Lamb DC, et al. Structure-function characterization of cytochrome P450 sterol 14a-demethylase (CYP51B) from Aspergillus fumigatus and molecular basis for the development of antifungal dsrugs. J Biol Chem. 2015;290(39):23916-23934. https://doi.org/10.1074/jbc.M115.677310
  24. LeBlanc N, Gehesquiere B, Salgado-Salazar C, et al. SSRs identify limited genetic diversity across pathogen populations responsible for the global emergence of boxwood blight. Plant Pathol. 2019;68(5):861-868. https://doi.org/10.1111/ppa.13003
  25. Malapi-Wight M, Veltri D, Gehesquiere B, et al. Global distribution of mating types shows limited opportunities for mating across populations of fungi causing boxwood blight disease. Fungal Genet Biol. 2019;131:103246. https://doi.org/10.1016/j.fgb.2019.103246
  26. Villani SM, Hulvey J, Hily J-H, et al. Overexpression of the CYP51A1 gene and repeated elements are associated with differentialc sensitivity to DMI fungicides in Venturia inaequalis. Phytopathology. 2016;106(6):562-571. https://doi.org/10.1094/PHYTO-10-15-0254-R
  27. Sang H, Hulvey JP, Green R, et al. A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. mBio. 2018;9(4):pii:e00457-18.

Cited by

  1. One Clonal Lineage of Calonectria pseudonaviculata Is Primarily Responsible for the Boxwood Blight Epidemic in the United States vol.110, pp.11, 2020, https://doi.org/10.1094/phyto-04-20-0130-r
  2. Population Genomics Trace Clonal Diversification and Intercontinental Migration of an Emerging Fungal Pathogen of Boxwood vol.111, pp.1, 2021, https://doi.org/10.1094/phyto-06-20-0219-fi
  3. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179255