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SOME INEQUALITIES FOR GENERAL SUM–CONNECTIVITY

INDEX

M.M. MATEJIĆ, I.Ž. MILOVANOVIĆ, E.I. MILOVANOVIĆ∗

Abstract. Let G be a simple connected graph with n vertices and m

edges. Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0 and d(e1) ≥ d(e2) ≥ · · · ≥ d(em)

sequences of vertex and edge degrees, respectively. If vertices vi and vj are
adjacent, we write i ∼ j. The general sum–connectivity index is defined

as χα(G) =
∑
i∼j(di + dj)

α, where α is an arbitrary real number. Firstly,

we determine a relation between χα(G) and χα−1(G). Then we use it to

obtain some new bounds for χα(G).
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index.

1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}, be a simple
connected graph with n vertices, m ≥ 1 edges, and a sequence of vertex degrees
d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(vi). Let e = {vi, vj} be an arbitrary edge in
G connecting vertices vi and vj . The degree of an edge e is defined as d(e) =
di + dj − 2. Denote by ∆e = d(e1) + 2 ≥ d(e2) + 2 ≥ · · · ≥ d(em) + 2 = δe be
a sequence of modified edge degrees in G. If vertices vi and vj are adjacent we
write i ∼ j.

In graph theory, an invariant is a a numerical quantity associated with graphs
that depends only on their abstract structure, not on the labeling of vertices or
edges. In mathematical chemistry, such quantities are also referred to as topo-
logical indices. Topological indices are an important class of molecular structure
descriptors used for quantifying information on molecules. Hundreds of topo-
logical indices have been introduced in order to describe physical and chemical
properties of molecules. Various mathematical properties of topological indices
have been investigated, as well. As topological indices have been defined for
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quantifying information of graphs, this area could be classified into the so-called
quantitative graph theory [4].

One of the most popular and extensively studied graph based molecular struc-
ture descriptors is the first Zagreb index introduced by Gutman and Trinajstić
in [10]. It is defined as

M1(G) =

n∑
i=1

d2
i .

Recently [8], a graph invariant similar to M1 came into the focus of attention,
defined as

F (G) =

n∑
i=1

d3
i =

∑
i∼j

(d2
i + d2

j ) ,

which for historcal reasons [9] was named forgotten topological index.
Zhou and Trinajstić [32] introduced general sum–connectivity index, con-

ceived as
χα(G) =

∑
i∼j

(di + dj)
α,

where α is an arbitrary real number. It can be easily seen that

χα(G) =

m∑
i=1

(d(ei) + 2)α .

For specific values of α, specific notations (and hence specific names) are
being used. Here we list some particular indices of this kind for which we are
interested in.

• Sum–connectivity index [30], obtained for α = −1/2,

SC(G) = χ−1/2(G) =
∑
i∼j

1√
di + dj

=

m∑
i=1

1√
d(ei) + 2

.

• Harmonic index [6], obtained for α = −1,

H(G) = 2χ−1(G) =
∑
i∼j

2

di + dj
=

m∑
i=1

2

d(ei) + 2
.

• First Zagreb index, obtained for α = 1,

M1(G) = χ1(G) =
∑
i∼j

(di + dj) =

m∑
i=1

(d(ei) + 2) .

• Hyper–Zagreb index [26] obtained for α = 2,

HM(G) = χ2(G) =
∑
i∼j

(di + dj)
2 =

m∑
i=1

(d(ei) + 2)2 .

It is not difficult to observe that

HM(G) = F (G) + 2M2(G) ,
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where

M2(G) =
∑
i∼j

didj

is the second Zagreb index defined in [11].
• For α = 3, one could obtain

χ3(G) =
∑
i∼j

(di + dj)
3 =

m∑
i=1

(d(ei) + 2)3 .

It can be verified that the following identity is valid

χ3(G) = EF (G) + 6HM(G)− 12M1(G) + 8m,

where

EF (G) =

m∑
i=1

d(ei)
3

is reformulated forgotten topological index [14].

More on these and some other topological indices one can find, for example,
in [1, 2, 12,15–18,20,21].

In this paper we determine a relationship between χα(G) and χα−1(G) and
based on it obtain some new bounds for χα(G).

2. Preliminaries

In this section we recall some results from the literature that are of interest
for our work.

Lemma 2.1. [22] Let p = (pi), i = 1, 2, . . . , n, be nonnegative real number
sequence and a = (ai), i = 1, 2, . . . , n, be positive real number sequence. Then
for any real r such that r ≥ 1 or r ≤ 0 holds(

n∑
i=1

pi

)r−1 n∑
i=1

pia
r
i ≥

(
n∑
i=1

piai

)r
. (1)

If 0 ≤ r ≤ 1, then (1) reverses. Equality holds if and only if either r = 0,
or r = 1, or for some t, 1 ≤ t ≤ n − 1, holds p1 = p2 = · · · = pt = 0 and
at+1 = at+2 = · · · = an.

The following relation between χα(G) and M1(G) was determined in [32].

Lemma 2.2. [32] Let G be a simple graph of size m. The for any α, α ≤ 0 or
α ≥ 1, holds

χα(G) ≥ M1(G)α

mα−1
. (2)

If 0 ≤ α ≤ 1, then the opposite inequality holds. Equality is attained if and only
if G is regular or semiregular bipartite graph.

The inequality (2) for α = 2 was proven in [8] (see also [7])
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Lemma 2.3. [8] Let G be a simple graph of size m. Then

HM(G) ≥ M1(G)2

m
, (3)

with equality holding if and only if G is regular or semiregular bipartite graph.

The following relationship between χα(G) and HM(G) and M1(G) was es-
tablished in [20].

Lemma 2.4. [20]. Let G be a simple graph of size m. Then for any α, α ≤ 1
or α ≥ 2, holds

χα(G) ≥ HM(G)α−1

M1(G)α−2
. (4)

If 1 ≤ α ≤ 2, then the opposite inequality holds. Equality holds if and only if
either α = 1, or α = 2, or G is regular or semiregular bipartite graph.

The inequality (4) for α = 3 was proven in [25].

Lemma 2.5. [25] Let G be a simple connected graph. Then

χ3(G) ≥ HM(G)2

M1(G)
. (5)

Equality is attained if and only if G is regular or semiregular bipartite graph.

3. Main results

In the next theorem we determine a relationship between χα(G) and χα−1(G),
M1(G) and H(G).

Theorem 3.1. Let G be a simple connected graph with m ≥ 1 edges. Then for
any real α such that α ≤ 0 or α ≥ 1 holds

χα(G) ≥ max

{
(M1(G)−m)

α(
m− 1

2H(G)
)α−1 + χα−1(G),

(M1(G) +m)
α(

m+ 1
2H(G)

)α−1 − χα−1(G)

}
.

(6)

If 0 ≤ α ≤ 1, then

χα(G) ≤ min

{
(M1(G)−m)

α(
m− 1

2H(G)
)α−1 + χα−1(G),

(M1(G) +m)
α(

m+ 1
2H(G)

)α−1 − χα−1(G)

}
.

Equalities hold if and only if either α = 0, or α = 1, or G is regular or semireg-
ular bipartite graph.

Proof. For r = α, α ≤ 0 or α ≥ 1, n = m, pi = 1 − 1
d(ei)+2 , ai = d(ei) + 2,

i = 1, 2, . . . ,m, the inequality (1) becomes(
m∑
i=1

(
1− 1

d(ei) + 2

))α−1 m∑
i=1

(
1− 1

d(ei) + 2

)
(d(ei) + 2)

α
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≥

(
m∑
i=1

(
1− 1

d(ei) + 2

)
(d(ei) + 2)

)α
,

that is
m∑
i=1

(d(ei) + 1) (d(ei) + 2)
α−1 ≥ (M1(G)−m)

α(
m− 1

2H(G)
)α−1 . (7)

On the other hand, for any real α we have that

χα(G)− χα−1(G) =

m∑
i=1

(d(ei) + 1) (d(ei) + 2)
α−1

. (8)

From (7) and (8) follows

χα(G) ≥ χα−1(G) +
(M1(G)−m)

α(
m− 1

2H(G)
)α−1 . (9)

Now, for r = α, α ≤ 0 or α ≥ 1, n = m, pi = 1 + 1
d(ei)+2 , ai = d(ei) + 2,

i = 1, 2, . . . ,m, the inequality (1) transforms into(
m∑
i=1

(
1 +

1

d(ei) + 2

))α−1 m∑
i=1

(d(ei) + 3) (d(ei) + 2)
α−1 ≥

(
m∑
i=1

(d(ei) + 3)

)α
,

i.e.
m∑
i=1

(d(ei) + 3) (d(ei) + 2)
α−1 ≥ (M1(G) +m)

α(
m+ 1

2H(G)
)α−1 . (10)

For any real α we have that

χα(G) + χα−1(G) =

m∑
i=1

(d(ei) + 3) (d(ei) + 2)
α−1

.

From the above and (10) we get

χα(G) + χα−1(G) ≥ (M1(G) +m)
α(

m+ 1
2H(G)

)α−1 . (11)

The inequality (6) is obtained according to (9) and (11).
Equalities in (9) and (11) hold if and only if either α = 0, or α = 1, or

d(e1) + 2 = d(e2) + 2 = · · · = d(em) + 2, which implies that equality in (6) holds
if and only if either α = 0, or α = 1, or G is regular or semiregular bipartite
graph.

By a similar procedure we prove inequality when 0 ≤ α ≤ 1. �

Corollary 3.2. Let G be a simple connected graph with m ≥ 1 edges. Then for
every real α ≥ 1 holds

χα(G) ≥ χα−1(G) + (M1(G)−m)

(
M1(G)

m

)α−1

. (12)

Equality holds if and only if α = 1 or G is regular or semiregular bipartite graph.
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Proof. According to the arithmetic–harmonic mean inequality for real numbers
[23], we have that

1

2
H(G)M1(G) ≥ m2. (13)

From the above inequality follows

M1(G)−m
m− 1

2H(G)
≥ M1(G)

m
,

wherefrom we obtain that for any real α ≥ 1 holds(
M1(G)−m
m− 1

2H(G)

)α−1

≥
(
M1(G)

m

)α−1

.

From the above and (6) we arrive at (12). �

The inequality (13) was proven in [13] (see also [27,28]).
For α = 2 and α = 3 from (6) and (12) the following corollary of Theorem

3.1 is obtained.

Corollary 3.3. Let G be a simple connected graph with m ≥ 1 edges. Then

F (G) ≥M1(G)− 2M2(G) +
(M1(G)−m)

2

m− 1
2H(G)

, (14)

χ3(G) ≥ HM(G) +
(M1(G)−m)

3(
m− 1

2H(G)
)2

and

χ3(G) ≥ HM(G) + (M1(G)−m)

(
M1(G)

m

)2

.

Equalities hold if and only if G is regular or semiregular bipartite graph.

Corollary 3.4. Let G be a simple connected graph with m ≥ 1 edges. Then for
any real α such that α ≤ 0 or α ≥ 1 holds

χα(G) ≥ 1

2

(
(M1(G)−m)

α(
m− 1

2H(G)
)α−1 +

(M1(G) +m)
α(

m+ 1
2H(G)

)α−1

)
.

If 0 ≤ α ≤ 1, then the opposite inequality holds. Equality holds if and only if
either α = 0, or α = 1, or G is regular or semiregular bipartite graph.

Corollary 3.5. Let G be a simple connected graph with m ≥ 1 edges. Then

SC(G) ≥ 1

2

((
m− 1

2H(G)
)3/2

(M1(G)−m)
1/2

+

(
m+ 1

2H(G)
)3/2

(M1(G) +m)
1/2

)
,

HM(G) ≥ 1

2

(
(M1(G)−m)

2

m− 1
2H(G)

+
(M1(G) +m)

2

m+ 1
2H(G)

)
,
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χ3(G) ≥ 1

2

(
(M1(G)−m)

3(
m− 1

2H(G)
)2 +

(M1(G) +m)
3(

m+ 1
2H(G)

)2
)
.

Equalities hold if and only if G is regular or semiregular bipartite graph.

By a similar procedure as in case of Theorem 3.1, the following results are
proved.

Theorem 3.6. Let G be a simple connected graph with m ≥ 1 edges. Then for
any real α such that α ≤ 1 or α ≥ 2 holds

χα(G) ≥ max

{
(HM(G)−M1(G))

α−1

(M1(G)−m)
α−2 + χα−1(G),

(HM(G) +M1(G))
α−1

(M1(G) +m)
α−2 − χα−1(G)

}
.

(15)

If 1 ≤ α ≤ 2, then

χα(G) ≤ min

{
(HM(G)−M1(G))

α−1

(M1(G)−m)
α−2 + χα−1(G),

(HM(G) +M1(G))
α−1

(M1(G) +m)
α−2 − χα−1(G)

}
.

Equalities hold if and only if either α = 1, or α = 2, or G is regular or
semiregular bipartite graph.

Corollary 3.7. Let G be a simple connected graph with m ≥ 1 edges. Then for
any real α such that α ≤ 1 or α ≥ 2 holds

χα(G) ≥ 1

2

(
(HM(G)−M1(G))

α−1

(M1(G)−m)
α−2 +

(HM(G) +M1(G))
α−1

(M1(G) +m)
α−2

)
.

For 1 ≤ α ≤ 2, the sense of the above inequality reverses. Equality holds if and
only if either α = 1, or α = 2, or G is regular or semiregular bipartite graph.

Corollary 3.8. Let G be a simple connected graph with m ≥ 1 edges. Then

SC(G) ≥ 1

2

(
(M1(G)−m)

5/2

(HM(G)−M1(G))
3/2

+
(M1(G) +m)

5/2

(HM(G) +M1(G))
3/2

)
,

χ3(G) ≥ 1

2

(
(HM(G)−M1(G))

2

M1(G)−m
+

(HM(G) +M1(G))
2

M1(G) +m

)
,

χ3(G) ≥ HM(G) +
(HM(G)−M1(G))2

M1(G)−m
. (16)

Equalities hold if and only if G is regular or semiregular bipartite graph.

In the following theorems we establish lower bounds for χα(G) in terms of
M1(G) and parameters m, ∆e and δe.
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Theorem 3.9. Let G be a simple connected graph with m ≥ 3 edges. Then for
any real α, α ≤ 0 or α ≥ 1, holds

χα(G) ≥ ∆α
e + δαe +

(M1(G)−∆e − δe)α

(m− 2)α−1
. (17)

For 0 ≤ α ≤ 1, the sense of inequality reverses. Equality holds if and only if
either α = 0, or α = 1, or d(e2) + 2 = d(e3) + 2 = · · · = d(em−1) + 2.

Proof. The inequality (1) can be considered as(
m−1∑
i=2

pi

)r−1 m−1∑
i=2

pia
r
i ≥

(
m−1∑
i=2

piai

)r
. (18)

For r = α, α ≤ 0 or α ≥ 1, pi = 1, ai = d(ei) + 2, i = 2, 3, . . . ,m− 1, the above
inequality becomes

(m− 2)α−1
m−1∑
i=2

(d(ei) + 2)
α ≥

(
m−1∑
i=2

(d(ei) + 2)

)α
, (19)

that is

(m− 2)α−1 (χα(G)−∆α
e − δαe ) ≥ (M1(G)−∆e − δe)α ,

wherefrom (17) is obtained.
In a similar way we obtain that in (17) the opposite inequality holds for

0 ≤ α ≤ 1.
Equality in (19), i.e. in (17), holds if and only if either α = 0, or α = 1, or

d(e2) + 2 = d(e3) + 2 = · · · = d(em−1) + 2. �

By the similar arguments as in case of Theorem 3.9 we prove the following
results.

Theorem 3.10. Let G be a simple connected graph with m ≥ 2 edges. Then for
any real α, such that α ≤ 0 or α ≥ 1, holds

χα(G) ≥ max

{
∆α
e +

(M1(G)−∆e)
α

(m− 1)
α−1 , δαe +

(M1(G)− δe)α

(m− 1)
α−1

}
.

If 0 ≤ α ≤ 1, then

χα(G) ≤ min

{
∆α
e +

(M1(G)−∆e)
α

(m− 1)
α−1 , δαe +

(M1(G)− δe)α

(m− 1)
α−1

}
.

Equalities hold if and only if either α = 0, or α = 1, or d(e2) = d(e3) = · · · =
d(em), or d(e1) = d(e2) = · · · = d(em−1).

Corollary 3.11. Let G be a simple connected graph. Then

SC(G) ≥
√

∆e +
√
δe√

∆eδe
+

(m− 2)3/2

(M1(G)−∆e − δe)1/2
(m ≥ 2), (20)
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SC(G) ≥ max

{
1√
∆e

+
(m− 1)

3
2

(M1(G)−∆e)
1
2

,

1√
δe

+
(m− 1)

3
2

(M1(G)− δe)
1
2

}
(m ≥ 2),

(21)

HM(G) ≥ ∆2
e + δ2

e +
(M1(G)−∆e − δe)2

m− 2
(m ≥ 3), (22)

HM(G) ≥ max

{
∆2
e +

(M1(G)−∆e)
2

m− 1
,

δ2
e +

(M1(G)− δe)2

m− 1

}
(m ≥ 2),

(23)

χ3(G) ≥ ∆3
e + δ3

e +
(M1(G)−∆e − δe)3

(m− 2)2
(m ≥ 3), (24)

χ3(G) ≥ max

{
∆3
e +

(M1(G)−∆e)
3

(m− 1)2
, δ3
e +

(M1(G)− δe)3

(m− 1)2

}
(m ≥ 2). (25)

Equalities in (20), (22) and (24) hold if and only if d(e2) + 2 = d(e3) + 2 =
· · · = d(em−1) + 2, while in (21), (23) and (25) if and only if d(e2) + 2 =
d(e3) + 2 = · · · = d(em) + 2, or d(e1) + 2 = d(e2) + 2 = · · · = d(em−1) + 2.

Remark 3.1. It can be easily observed that for r = α, n = m, pi = 1, ai =
d(ei)+2, i = 1, 2, . . . ,m, from (1) the inequality (2) is obtained. The inequalities
proven in Theorems 3.9 and 3.10 are stronger than (2). Similarly, the inequalities
(22) and (23) are stronger than (3).

In the next theorem we determine lower bound for χα(G) in terms of M1(G),
HM(G), ∆e and δe.

Theorem 3.12. Let G be a simple connected graph with m ≥ 3 edges. Then for
any real number α, α ≤ 1 or α ≥ 2, holds

χα(G) ≥ ∆α
e + δαe +

(HM(G)−∆2
e − δ2

e)α−1

(M1(G)−∆e − δe)α−2
. (26)

For 1 ≤ α ≤ 2, the sense of the above inequality reverses. Equality holds if and
only if either α = 1, or α = 2, or d(e2) + 2 = d(e3) + 2 = · · · = d(em−1) + 2.

Proof. For r = α − 1, α ≤ 1 or α ≥ 2, pi = d(ei) + 2, ai = d(ei) + 2, i =
2, 3, . . . ,m− 1, the inequality (18) becomes(

m−1∑
i=2

(d(ei) + 2)

)α−2 m−1∑
i=2

(d(ei) + 2)
α ≥

(
m−1∑
i=2

(d(ei) + 2)
2

)α−1

, (27)
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that is

(M1(G)−∆e − δe)α−2
(χα(G)−∆α

e − δαe ) ≥
(
HM(G)−∆2

e − δ2
e

)α−1
,

wherefrom (26) follows.
Similarly, we conclude that in (26) the opposite inequality holds for 1 ≤ α ≤ 2.
Equality in (27), i.e. in (26), holds if and only if either α = 1, or α = 2, or

d(e2) + 2 = d(e3) + 2 = · · · = d(em−1) + 2. �

The proof of the next theorem is fully analogous to that of Theorem 3.12,
hence omitted.

Theorem 3.13. Let G be a simple connected graph with m ≥ 2 edges. Then for
any real α, such that α ≤ 1 or α ≥ 2, holds

χα(G) ≥ max

{
∆α
e +

(
HM(G)−∆2

e

)α−1

(M1(G)−∆e)
α−2 , δαe +

(
HM(G)− δ2

e

)α−1

(M1(G)− δe)α−2

}
.

If 1 ≤ α ≤ 2, then

χα(G) ≤ min

{
∆α
e +

(
HM(G)−∆2

e

)α−1

(M1(G)−∆e)
α−2 , δαe +

(
HM(G)− δ2

e

)α−1

(M1(G)− δe)α−2

}
.

Equalities hold if and only if either α = 1, or α = 2, or d(e2) = d(e3) = · · · =
d(em), or d(e1) = d(e2) = · · · = d(em−1).

Remark 3.2. For r = α − 1, n = m, α ≤ 1 or α ≥ 2, pi = ai = d(ei) + 2, i =
1, 2, . . . ,m, from (1) we get (4). Therefore, the inequalities proven in Theorems
3.12 and 3.13 are stronger than inequality (4).

Corollary 3.14. Let G be a simple connected graph with m edges. Then

χ3(G) ≥ ∆3
e + δ3

e +

(
HM(G)−∆2

e − δ2
e

)2
M1(G)−∆e − δe

(m ≥ 3), (28)

with equality holding if and only if d(e2) = d(e3) = · · · = d(em−1), and

χ3(G) ≥ max

{
∆3
e +

(
HM(G)−∆2

e

)2
M1(G)−∆e

, δ3
e +

(
HM(G)− δ2

e

)2
M1(G)− δe

}
(m ≥ 2),

(29)
with equality holding if and only if d(e2) = d(e3) = · · · = d(em), or d(e1) =
d(e2) = · · · = d(em−1).

The inequalities (28) and (29) are stronger than (5).
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32. B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010),
210-218.
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gineering, University of Nǐs, Serbia. She is full professor at the Faculty of Electronic
Engineering, Department of Computer Science. Her research interests include computer

architecture, fault tolerance, parallel computing and graph theory.

Department of Computer Science, Faculty of Electronic Engineering, University of Nǐs,
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