DOI QR코드

DOI QR Code

FITTED MESH METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL TURNING POINT PROBLEMS EXHIBITING TWIN BOUNDARY LAYERS

  • Received : 2019.02.18
  • Accepted : 2019.10.20
  • Published : 2020.01.30

Abstract

In this paper, a class of linear second order singularly perturbed delay differential turning point problems containing a small delay (or negative shift) on the reaction term and when the solution of the problem exhibits twin boundary layers are examined. A hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the problem. We proved that the method is almost second order ε-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results.

Keywords

References

  1. G.M. Amiraliyev, E. Cimen, Numerical method for a singularly perturbed convection-diffusion problem with delay, App. Math. Comput. 216 (2010), 2351-2359. https://doi.org/10.1016/j.amc.2010.03.080
  2. S. Becher and H.-G. Roos, Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers, J. Comput. Appl. Math. 290 (2015), 334-351. https://doi.org/10.1016/j.cam.2015.05.022
  3. R. Bellman and K.L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
  4. A. Berger, H. Han, and R. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem, Math. Comp. 42 (1984), 465-492. https://doi.org/10.1090/S0025-5718-1984-0736447-2
  5. M.W. Derstine, H.M. Gibbs, F.A. Hopf, D.L. Kaplan, Bifurcation gap in a hybrid optical system, Phys. Rev. A. 26 (1982), 3720-3722. https://doi.org/10.1103/PhysRevA.26.3720
  6. R.D. Driver, Ordinary and Delay Differential Equations, Springer, New York, 1977.
  7. V.Y. Glizer, Asymptotic analysis and solution of a finite-horizon H$_{\propto}$ control problem for singularly-perturbed linear systems with small state delay, J. Optim. Theory Appl. 117 (2003), 295-325. https://doi.org/10.1023/A:1023631706975
  8. D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1989), 41-73. https://doi.org/10.1103/RevModPhys.61.41
  9. M.K. Kadalbajoo and V.P. Ramesh, Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. Optim. Theory Appl. 115 (2002), 145-163. https://doi.org/10.1023/A:1019681130824
  10. M.K. Kadalbajoo and K.K. Sharma, Numerical Treatment of mathematical model arising from a model of neuronal variability, J. Math. Anal. Appl. 307 (2005), 606-627. https://doi.org/10.1016/j.jmaa.2005.02.014
  11. M.K. Kadalbajoo, K.C. Patidal, K.K. Sharma, ${\varepsilon}$-uniform convergent fitted method for the numerical solution of the problems arising from singularly perturbed general DDEs, App. Math. Comput. 182 (2006), 119-139. https://doi.org/10.1016/j.amc.2006.03.043
  12. M.K. Kadalbajoo, P. Arora, and V. Gupta, Collection method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comp. Math. App. 61 (2011), 1595-1607. https://doi.org/10.1016/j.camwa.2011.01.028
  13. R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singularly perturbation problem without turning points, Math. Comput. 32 (1978), 1025-1039. https://doi.org/10.1090/S0025-5718-1978-0483484-9
  14. C.G. Lange and R.M. Miura, Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Equations II. Rapid Oscillations and Resonances, SIAM J. on App. Math. 45 (1985), 687-707. https://doi.org/10.1137/0145041
  15. C.G. Lange and R.M. Miura, Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Equations III. Turning Point Problems, SIAM J. on App. Math. 45 (1985), 708-734. https://doi.org/10.1137/0145042
  16. C.G. Lange and R.M. Miura, Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Equations. v. small shifts with layer behavior, SIAM J. on App. Math. 54 (1994), 249-272. https://doi.org/10.1137/S0036139992228120
  17. X. Liao, Hopf and resonant co-dimension two bifurcations in vander Pol equation with two time delays, Chaos Soliton Fract. 23 (2005), 857-871. https://doi.org/10.1016/j.chaos.2004.05.048
  18. A. Longtin, J. Milton, Complex oscillations in the human pupil light reflex with mixed and delayed feedback, Math. Biosci. 90 (1988), 183-199. https://doi.org/10.1016/0025-5564(88)90064-8
  19. M.C. Mackey, L. Glass, Oscillations and chaos in physiological control systems, Science 197 (1977), 287-289. https://doi.org/10.1126/science.267326
  20. F. Mirzaee and S.F. Hoseini, Solving singularly perturbed differential-difference equations arising in science and engineering with Fibonacci polynomials, Results in Physics 3 (2013), 134-141. https://doi.org/10.1016/j.rinp.2013.08.001
  21. K.C. Patidar and K.K. Sharma, ${\varepsilon}$-Uniformly convergent nonstandard finite difference methods for singularly perturbed differential-difference equations with small delay, Appl. Math. Comput. 175 (2006), 864-890. https://doi.org/10.1016/j.amc.2005.08.006
  22. P. Rai and K.K. Sharma, Parameter uniform numerical method for singularly perturbed differential-difference equations with interior layer, Inter. J. Comp. Math. 88 (2011), 3416-3435. https://doi.org/10.1080/00207160.2011.591387
  23. P. Rai and K.K. Sharma, Numerical analysis of singularly perturbed delay differential turning point problem, Appl. Math. Comp. 218 (2011), 3483-3498. https://doi.org/10.1016/j.amc.2011.08.095
  24. P. Rai and K.K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comp. Math. App. 63 (2012), 118-132. https://doi.org/10.1016/j.camwa.2011.10.078
  25. P. Rai and K.K. Sharma, Fifitted mesh numerical method for singularly perturbed delay differential turning point problems exhibiting boundary layers, Int. J. Comput. Math. 89 (2012), 944-961. https://doi.org/10.1080/00207160.2012.668890
  26. H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2008.
  27. D.Y. Tzou, Macro-To-Micro Scale Heat Transfer, Taylor and Francis, Washington DC, 1997.
  28. M. Wazewska-Czyzewska, A. Lasota, Mathematical models of the red cell system, Mat. Stos. 6 (1976), 25-40.