DOI QR코드

DOI QR Code

Bi-doped ZnO 박막의 열처리에 따른 특성

Annealing Effects on the Properties of Bi-doped ZnO Thin Film

  • 신종언 (신소재공학부 공과대학 신라대학교) ;
  • 황인주 (융합기계공학부 MICT 융합공과대학 신라대학교) ;
  • 조신호 (신소재공학부 공과대학 신라대학교)
  • Shin, Johngeon (Division of Materials Science and Engineering, Silla University) ;
  • Hwang, Injoo (Division of Mechanical Convergence Engineering, Silla University) ;
  • Cho, Shinho (Division of Materials Science and Engineering, Silla University)
  • 투고 : 2019.12.16
  • 심사 : 2019.12.31
  • 발행 : 2020.01.30

초록

Annealing effects on the properties of Bi-doped ZnO thin films were investigated. Bi- doped ZnO thin films were deposited on quartzs substrates at 300℃ by using radio-frequency magnetron sputtering system. Post heat treatments at 600, 700, and 800℃ were performed to evaluate the effect of annealing temperatures on the structural, optical, and electrical properties of Bi-doped ZnO thin films. FE-SEM images showed the dramatic surface morphology changes by rearrangement of elements at high heat treatment temperature of 800℃. X-ray diffraction analysis indicated that the peaks of the Bi-doped ZnO thin films were same as the peaks of the (002) planes of ZnO peak-positioned at 2θ=34.0° and peak intensities and FWHMs were improved as the annealing temperatures increased. The optical transmittance was improved with increasing annealing temperatures and was over 80% in the wavelength region between 435 and 1100 nm at the annealing temperature of 700 and 800℃. With increasing annealing temperature, the electron concentrations and electron mobilities were increased. On the other hand, electric resistivity of the films were decreased with increasing annealing temperatures. These results showed that the heat treatment temperature is an important parameter to improve the structural, optical, and electrical properties of Bi-doped ZnO thin films.

키워드

참고문헌

  1. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strasburg, M. Dworzak, U. Haboeck, and A. V. Rodina : Phys. Stat. Sol. (b) 241(2) (2004) 231. https://doi.org/10.1002/pssb.200301962
  2. Y. Choi, J. Kang, D. Hwang, and S. Park : Ieee Transactions On Electron De Vices, 57(1) (2010) 26. https://doi.org/10.1109/TED.2009.2033769
  3. K. Lam, Y. Hsiao, L. Ji, T. Fang, K. Hsiao, and T. Chu : Nanoscale Research Letters (2017) 12:31.
  4. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc : J. Appl. Phys., 98(4) (2005) 041301. https://doi.org/10.1063/1.1992666
  5. L. Jiang, K. Huang, J. Li, S. Li, Y. Gao, W. Tang, X. Guo, J. Wang, T. Mei, and X. Wang : Ceramics International, 44(10) (2018) 11751. https://doi.org/10.1016/j.ceramint.2018.03.254
  6. D. Lin, X. Zheng, J. Yang, K. Li, J. Shao, and Q. Zhang : J. Mat. Sci.: Mat Elect. 30 (2019) 12929. https://doi.org/10.1007/s10854-019-01655-9
  7. G. Cheng, W. Y. Tong, K. H. Low and C. M. Che : Solar Energy Mater. Solar Cells, 103 (2012) 164. https://doi.org/10.1016/j.solmat.2012.04.022
  8. J. Zhang, H. Yang, Q. L. Zhang, S. Dong and J. K. Luo : Applied Surface Sci., 282 (2013) 390. https://doi.org/10.1016/j.apsusc.2013.05.141
  9. C. Chen, B. Shi, I. Guo, and M. Zhao : Proceedings of the SPIE, Optoelectronic Devices and Integration, Nov. 17-17, SPIE, (2010) 78472J.
  10. J. Shin and S. Cho : J. Kor. Phy. Soc. 74(2) (2019)177. https://doi.org/10.3938/jkps.74.177
  11. A. Ishizumi : Appl. Phys. Lett. 86 (2005) 253106. https://doi.org/10.1063/1.1952576
  12. S. Cho : Phys. Status Sol. A 211 (2014) 709. https://doi.org/10.1002/pssa.201330345
  13. M. Schloffer, C. Teichert, P. Supancic, A. Andreev, Y. Hou, and Z. Wang : J. Eur. Ceramic Soc., 30 (2010) 1761. https://doi.org/10.1016/j.jeurceramsoc.2010.01.005
  14. S. Rattanachan, P. Krongarrom and T. Fangsuwannarak : American Journal of Applied Sciences 10(11) (2013) 1427. https://doi.org/10.3844/ajassp.2013.1427.1438
  15. J. Shin and S. Cho : J. Kor. Phy. Soc. 72(8) (2018) 943. https://doi.org/10.3938/jkps.72.943