DOI QR코드

DOI QR Code

The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease

  • Shin, Woo Hyun (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Park, Joon Hyung (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Chung, Kwang Chul (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2019.10.14
  • Published : 2020.01.31

Abstract

The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation. Alternatively, many greatly damaged proteins are believed to be delivered to the lysosome for autophagic degradation. Although these autophagy and UPS pathways have not been considered to be directly related, many recent studies proposed their close link and dynamic interconversion. In this review, we'll focus on the several regulatory molecules that function in both UPS and autophagy and their crosstalk. Among the proposed multiple modulators, we will take a closer look at the so-called main connector of UPS-autophagy regulation, p62. Last, the functional role of p62 in the mitophagy and its implication for the pathogenesis of Parkinson's disease, one of the major neurodegenerative diseases, will be briefly reviewed.

Keywords

References

  1. Komander D and Rape M (2012) The ubiquitin code. Annu Rev Biochem 81, 203-229 https://doi.org/10.1146/annurev-biochem-060310-170328
  2. Klionsky DJ, Abdalla FC, Abeliovich H et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175 https://doi.org/10.4161/auto.5338
  3. Ohtake F and Tsuchiya H (2017) The emerging complexity of ubiquitin architecture. J Biochem 161, 125-133
  4. Schmidt M and Finley D (2014) Regulation of proteasome activity in health and disease. Biochim Biophys Acta 1843, 13-25 https://doi.org/10.1016/j.bbamcr.2013.08.012
  5. Swatek KN and Komander D (2016) Ubiquitin modifications. Cell Res 26, 399-422 https://doi.org/10.1038/cr.2016.39
  6. Kwon YT and Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42, 873-886 https://doi.org/10.1016/j.tibs.2017.09.002
  7. Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86, 193-224 https://doi.org/10.1146/annurev-biochem-061516-044908
  8. Feng Y, He D, Yao Z and Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24, 24-41 https://doi.org/10.1038/cr.2013.168
  9. Mizushima N, Kuma A, Kobayashi Y et al (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116, 1679-1688 https://doi.org/10.1242/jcs.00381
  10. Sarkar S (2013) Regulation of autophagy by mTORdependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41, 1103-1130 https://doi.org/10.1042/BST20130134
  11. Moreau K, Renna M and Rubinsztein DC (2013) Connections between SNAREs and autophagy. Trends Biochem Sci 38, 57-63 https://doi.org/10.1016/j.tibs.2012.11.004
  12. Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4, 1-26
  13. Tai HC and Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9, 826-838 https://doi.org/10.1038/nrn2499
  14. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163 https://doi.org/10.1016/j.cell.2007.10.035
  15. Labbadia J and Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84, 435-464 https://doi.org/10.1146/annurev-biochem-060614-033955
  16. Yuan T, Yan F, Ying M et al (2018) Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol 9, 1080 https://doi.org/10.3389/fphar.2018.01080
  17. Russell RC, Yuan HX and Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24, 42-57 https://doi.org/10.1038/cr.2013.166
  18. Korolchuk VI, Menzies FM and Rubinsztein DC (2009) A novel link between autophagy and the ubiquitinproteasome system. Autophagy 5, 862-863 https://doi.org/10.4161/auto.8840
  19. Nam T, Han JH, Devkota S and Lee HW (2017) Emerging paradigm of crosstalk between autophagy and the ubiquitin-proteasome system. Mol Cells 40, 897-905 https://doi.org/10.14348/MOLCELLS.2017.0226
  20. Xu D, Shan B, Sun H et al (2016) USP14 regulates autophagy by suppressing K63 ubiquitination of Beclin 1. Genes Dev 30, 1718-1730 https://doi.org/10.1101/gad.285122.116
  21. Min Y, Lee S, Kim MJ, Chun E and Lee KY (2017) Ubiquitin-specific protease 14 negatively regulates toll-like receptor 4-mediated signaling and autophagy induction by inhibiting ubiquitination of TAK1-binding protein 2 and Beclin 1. Front Immunol 8, 1827 https://doi.org/10.3389/fimmu.2017.01827
  22. Kim E, Park S, Lee JH et al (2018) Dual function of USP14 deubiquitinase in cellular proteasomal activity and autophagic flux. Cell Rep 24, 732-743 https://doi.org/10.1016/j.celrep.2018.06.058
  23. Gu Z, Flemington C, Chittenden T and Zambetti GP (2000) ei24, a p53 response gene involved in growth suppression and apoptosis. Mol Cell Biol 20, 233-241 https://doi.org/10.1128/MCB.20.1.233-241.2000
  24. Hwang M, Jun DW, Kang EH et al (2019) EI24, as a component of autophagy, is involved in pancreatic cell proliferation. Front Oncol 9, 652 https://doi.org/10.3389/fonc.2019.00652
  25. Tian Y, Li Z, Hu W et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042-1055 https://doi.org/10.1016/j.cell.2010.04.034
  26. Zhao YG, Zhao H, Miao L, Wang L, Sun F and Zhang H (2012) The p53-induced gene Ei24 is an essential component of the basal autophagy pathway. J Biol Chem 287, 42053-42063 https://doi.org/10.1074/jbc.M112.415968
  27. Choi JM, Devkota S, Sung YH and Lee HW (2013) EI24 regulates epithelial-to-mesenchymal transition and tumor progression by suppressing TRAF2-mediated $NF-{\kappa}B$ activity. Oncotarget 4, 2383-2396 https://doi.org/10.18632/oncotarget.1434
  28. Devkota S, Sung YH, Choi JM et al (2012) Ei24-deficiency attenuates protein kinase $C{\alpha}$ signaling and skin carcinogenesis in mice. Int J Biochem Cell Biol 44, 1887-1896 https://doi.org/10.1016/j.biocel.2012.06.034
  29. Chen D, Gould C, Garza R, Gao T, Hampton RY and Newton AC (2007) Amplitude control of protein kinase C by RINCK, a novel E3 ubiquitin ligase. J Biol Chem 282, 33776-33787 https://doi.org/10.1074/jbc.M703320200
  30. Devkota S, Jeong H, Kim Y et al (2016) Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases. Autophagy 12, 2038-2053 https://doi.org/10.1080/15548627.2016.1217371
  31. Hou B, Wang G, Gao Q et al (2019) SQSTM1/p62 loss reverses the inhibitory effect of sunitinib on autophagy independent of AMPK signaling. Sci Rep 9, 11087 https://doi.org/10.1038/s41598-019-47597-4
  32. Duran A, Amanchy R, Linares JF et al (2011) p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44, 134-146 https://doi.org/10.1016/j.molcel.2011.06.038
  33. Lamark T, Kirkin V, Dikic I and Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990 https://doi.org/10.4161/cc.8.13.8892
  34. Matsumoto G, Wada K, Okuno M, Kurosawa M and Nukina N (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44, 279-289 https://doi.org/10.1016/j.molcel.2011.07.039
  35. Kuma A, Mizushima N, Ishihara N and Ohsumi Y (2002) Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277, 18619-18625 https://doi.org/10.1074/jbc.M111889200
  36. Fujita N, Saitoh T, Kageyama S, Akira S, Noda T and Yoshimori T (2009) Differential involvement of Atg16L1 in crohn disease and canonical autophagy analysis of the organization of the Atg16L1 complex in fibroblasts. J Biol Chem 284, 32602-32609 https://doi.org/10.1074/jbc.M109.037671
  37. Xiong Q, Unal C, Matthias J, Steinert M and Eichinger L (2015) The phenotypes of ATG9, ATG16 and ATG9/16 knock-out mutants imply autophagy-dependent and -independent functions. Open Biol 5, 150008 https://doi.org/10.1098/rsob.150008
  38. Xiong Q, Fischer S, Karow M, Muller R, Messling S and Eichinger L (2018) Atg16 mediates the autophagic degradation of the 19S proteasomal subunits psmd1 and psmd2. Eur J Cell Biol 97, 523-532 https://doi.org/10.1016/j.ejcb.2018.09.002
  39. Lee JY, Koga H, Kawaguchi Y et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29, 969-980 https://doi.org/10.1038/emboj.2009.405
  40. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A and Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727-738 https://doi.org/10.1016/S0092-8674(03)00939-5
  41. Fusco C, Micale L, Egorov M et al (2012) The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62 and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome. PLoS One 7, e40440 https://doi.org/10.1371/journal.pone.0040440
  42. Yan J, Seibenhener ML, Calderilla-Barbosa L et al (2013) SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity. PLoS One 8, e76016 https://doi.org/10.1371/journal.pone.0076016
  43. Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863
  44. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW and Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770-774 https://doi.org/10.1038/35008096
  45. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10, 524-530 https://doi.org/10.1016/S0962-8924(00)01852-3
  46. Cyr DM, Hohfeld J and Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27, 368-375 https://doi.org/10.1016/S0968-0004(02)02125-4
  47. Harada M, Hanada S, Toivola DM, Ghori N and Omary MB (2008) Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47, 2026-2035 https://doi.org/10.1002/hep.22294
  48. Pan T, Kondo S, Zhu W, Xie W, Jankovic J and Le W (2008) Neuroprotection of rapamycin in lactacystininduced neurodegeneration via autophagy enhancement. Neurobiol Dis 32, 16-25 https://doi.org/10.1016/j.nbd.2008.06.003
  49. Cortes CJ and La Spada AR (2015) Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos? Mol Cell Neurosci 66, 53-61 https://doi.org/10.1016/j.mcn.2015.03.010
  50. Hetz C, Chevet E and Oakes SA (2015). Proteostasis control by the unfolded protein response. Nat Cell Biol 17, 829-838 https://doi.org/10.1038/ncb3184
  51. Munch D, Rodriguez E, Bressendorff S, Park OK, Hofius D and Petersen M (2014). Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress and cell death in Arabidopsis. Autophagy 10, 1579-1587 https://doi.org/10.4161/auto.29406
  52. Korolchuk VI, Mansilla A, Menzies FM and Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33, 517-527 https://doi.org/10.1016/j.molcel.2009.01.021
  53. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145 https://doi.org/10.1074/jbc.M702824200
  54. Zaffagnini G and Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428, 1714-1724 https://doi.org/10.1016/j.jmb.2016.02.004
  55. Lin X, Li S, Zhao Y et al (2013) Interaction domains of p62: a bridge between p62 and selective autophagy. DNA Cell Biol 32, 220-227 https://doi.org/10.1089/dna.2012.1915
  56. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR and Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24, 8055-8068 https://doi.org/10.1128/MCB.24.18.8055-8068.2004
  57. Puissant A, Fenouille N and Auberger P (2012) When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2, 397-413
  58. Thompson HG, Harris JW, Wold BJ, Lin F and Brody JP (2003) p62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene 22, 2322-2333 https://doi.org/10.1038/sj.onc.1206325
  59. Myeku N and Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 286, 22426-22440 https://doi.org/10.1074/jbc.M110.149252
  60. Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614 https://doi.org/10.1083/jcb.200507002
  61. Sahani MH, Itakura E and Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10, 431-441 https://doi.org/10.4161/auto.27344
  62. Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G and Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285, 5941-5953 https://doi.org/10.1074/jbc.M109.039925
  63. Pikkarainen M, Hartikainen P, Soininen H and Alafuzoff I (2011) Distribution and pattern of pathology in subjects with familial or sporadic late-onset cerebellar ataxia as assessed by p62/sequestosome immunohistochemistry. Cerebellum 10, 720-731 https://doi.org/10.1007/s12311-011-0281-2
  64. Bayraktar O, Oral O, Kocaturk NM et al (2016) IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation. PLoS One 11, e0164864 https://doi.org/10.1371/journal.pone.0164864
  65. Marshall RS, McLoughlin F and Vierstra RD (2016) Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep 6, 1717-1732
  66. Cohen-Kaplan V, Ciechanover A and Livneh I (2017) Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy 13, 759-760 https://doi.org/10.1080/15548627.2016.1278327
  67. Lim J, Lachenmayer ML, Wu S et al (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 11, e1004987 https://doi.org/10.1371/journal.pgen.1004987
  68. Moscat J, Diaz-Meco MT, Albert A and Campuzano S (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23, 631-640 https://doi.org/10.1016/j.molcel.2006.08.002
  69. Su H and Wang X (2011) p62 Stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress. Trends Cardiovasc Med 21, 224-228 https://doi.org/10.1016/j.tcm.2012.05.015
  70. Jain A, Lamark T, Sjottem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591 https://doi.org/10.1074/jbc.M110.118976
  71. Deng H, Dodson MW, Huang H and Guo M (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A 105, 14503-14508 https://doi.org/10.1073/pnas.0803998105
  72. Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103, 10793-10798 https://doi.org/10.1073/pnas.0602493103
  73. Song P, Li S, Wu H et al (2016) Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease. Protein Cell 7, 114-129 https://doi.org/10.1007/s13238-015-0230-9
  74. Zatloukal K, Stumptner C, Fuchsbichler A et al (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160, 255-263 https://doi.org/10.1016/S0002-9440(10)64369-6
  75. Wu F, Xu HD, Guan JJ et al (2015) Rotenone impairs autophagic flux and lysosomal functions in Parkinson's disease. Neuroscience 284, 900-911 https://doi.org/10.1016/j.neuroscience.2014.11.004