DOI QR코드

DOI QR Code

ERROR ESTIMATES FOR A GALERKIN METHOD FOR A COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

  • Omrani, Khaled (Institut Superieur des Sciences Appliquees et de Technologie de Sousse Universite de Sousse) ;
  • Rahmeni, Mohamed (Ecole Superieure des Sciences et de Technologie de Hammam Sousse Universite de Sousse)
  • 투고 : 2019.02.08
  • 심사 : 2019.06.26
  • 발행 : 2020.01.31

초록

In this paper, we approximate the solution of the coupled nonlinear Schrödinger equations by using a fully discrete finite element scheme based on the standard Galerkin method in space and implicit midpoint discretization in time. The proposed scheme guarantees the conservation of the total mass and the energy. First, a priori error estimates for the fully discrete Galerkin method is derived. Second, the existence of the approximated solution is proved by virtue of the Brouwer fixed point theorem. Moreover, the uniqueness of the solution is shown. Finally, convergence orders of the fully discrete Crank-Nicolson scheme are discussed. The end of the paper is devoted to some numerical experiments.

키워드

과제정보

We would like to thank the reviewers that their comments and suggestions have really improved the quality of the paper.

참고문헌

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. N. Atouani and K. Omrani, Galerkin finite element method for the Rosenau-RLW equation, Comput. Math. Appl. 66 (2013), no. 3, 289-303. https://doi.org/10.1016/j.camwa.2013.04.029
  3. H. P. Bhatt and A. Q. M. Khaliq, Higher order exponential time differencing scheme for system of coupled nonlinear Schrodinger equations, Appl. Math. Comput. 228 (2014), 271-291. https://doi.org/10.1016/j.amc.2013.11.089
  4. A. Biswas, Soliton solutions of the perturbed resonant nonlinear Schrodinger's equation with full nonlinearity by semi-inverse variational principle, Quant. Phys. Lett. 1 (2012), no. 2, 79-86.
  5. S. Boulaaras and M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indag. Math. (N.S.) 24 (2013), no. 1, 161-173. https://doi.org/10.1016/j.indag.2012.07.005
  6. S. Boulaaras, M. A. B. Le Hocine, and M. Haiour, $L^{\infty}$-error estimates of finite element methods with Euler time discretization scheme for an evolutionary HJB equations with nonlinear source terms, J. Appl. Math. Comput. Mech. 16 (2017), no. 1, 19-31. https://doi.org/10.17512/jamcm.2017.1.02
  7. F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, in Proc. Sympos. Appl. Math., Vol. XVII, 24-49, Amer. Math. Soc., Providence, RI, 1965.
  8. J. Cai, Y. Wang, and H. Liang, Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrodinger system, J. Comput. Phys. 239 (2013), 30-50. https://doi.org/10.1016/j.jcp.2012.12.036
  9. Y. Chen, H. Zhu, and S. Song, Multi-symplectic splitting method for the coupled nonlinear Schrodinger equation, Comput. Phys. Comm. 181 (2010), no. 7, 1231-1241. https://doi.org/10.1016/j.cpc.2010.03.009
  10. A. S. Davydov, Solitons in molecular systems, translated from the Russian by Eugene S. Kryachko, Mathematics and its Applications (Soviet Series), 4, D. Reidel Publishing Co., Dordrecht, 1985. https://doi.org/10.1007/978-94-017-3025-9
  11. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc., London, 1982.
  12. T. Geyikli and S. B. G. Karakoc, Subdomain finite element method with quartic Bsplines for the modified equal width wave equation, Comput. Math. Math. Phys. 55 (2015), no. 3, 410-421. https://doi.org/10.1134/S0965542515030070
  13. X. Hu and L. Zhang, Conservative compact difference schemes for the coupled nonlinear Schrodinger system, Numer. Methods Partial Differential Equations 30 (2014), no. 3, 749-772. https://doi.org/10.1002/num.21826
  14. M. S. Ismail and T. R. Taha, A linearly implicit conservative scheme for the coupled nonlinear Schrodinger equation, Math. Comput. Simulation 74 (2007), no. 4-5, 302-311. https://doi.org/10.1016/j.matcom.2006.10.020
  15. S. B. G. Karakoc, A quartic subdomain finite element method for the modified KdV equation, Stat. Optim. Inf. Comput. 6 (2018), no. 4, 609-618. https://doi.org/10.19139/soic.v6i4.485
  16. L. Kong, J. Hong, L. Ji and P. Zhu, Compact and efficient conservative schemes for coupled nonlinear Schrodinger equations, Numer. Methods Partial Differential Equations 31 (2015), no. 6, 1814-1843. https://doi.org/10.1002/num.21969
  17. Y. Ma, L. Kpng, and J. Hong, High-order compact splitting multisymplectic method for the coupled nonlinear Schrodinger equations, Comput. Math. Appl. 61 (2011), no. 2, 319-333. https://doi.org/10.1016/j.camwa.2010.11.007
  18. K. Omrani, On the numerical approach of the enthalpy method for the Stefan problem, Numer. Methods Partial Differential Equations 20 (2004), no. 4, 527-551. https://doi.org/10.1002/num.10105
  19. W. J. Sonnier and C. I. Christov, Strong coupling of Schrodinger equations: conservative scheme approach, Math. Comput. Simulation 69 (2005), no. 5-6, 514-525. https://doi.org/10.1016/j.matcom.2005.03.016
  20. C. Sulem and P.-L. Sulem, The Nonlinear Schrodinger equation, Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999.
  21. Z. Sun and D. Zhao, On the $L_{\infty}$ convergence of a difference scheme for coupled nonlinear Schrodinger equations, Comput. Math. Appl. 59 (2010), no. 10, 3286-3300. https://doi.org/10.1016/j.camwa.2010.03.012
  22. V. Thomee, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, 1054, Springer-Verlag, Berlin, 1984.
  23. H. Triki, A. Choudhuri, K.Porsezian, and P.Tchofo Dinda, Dark solitons in an extended nonlinear Schrodinger equation with higher-order odd and even terms, Optik - International Journal for Light and Electron Optics. 164 (2018), 661-670. https://doi.org/10.1016/j.ijleo.2018.03.054
  24. H. Triki, T. Hayat, O. M. Aldossary, and A. Biswas, Bright anddark solitons for the resonant nonlinear Schrodinger's equationwith time-dependent coefficients. Optics and Laser Technology. 44 (2012), no. 7, 2223-2231. https://doi.org/10.1016/j.optlastec.2012.01.037
  25. H. Triki, K. Porsezian, A. Choudhuri, and P. T. Dinda, Chirped solitary pulses for a nonic nonlinear Schrodinger equation on a continuous-wave background, Phys. Rev. A. 93 (2016), no. 6, 063810. https://doi.org/10.1103/PhysRevA.93.063810
  26. T. Wang, Maximum norm error bound of a linearized difference scheme for a coupled nonlinear Schrodinger equations, J. Comput. Appl. Math. 235 (2011), no. 14, 4237- 4250. https://doi.org/10.1016/j.cam.2011.03.019
  27. T. Wang, Optimal point-wise error estimate of a compact finite difference scheme for the coupled nonlinear Schrodinger equations, J. Comput. Math. 32 (2014), no. 1, 58-74. https://doi.org/10.4208/jcm.1310-m4340
  28. T. Wang, T. Nie, and L. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrodinger system, J. Comput. Appl. Math. 231 (2009), no. 2, 745-759. https://doi.org/10.1016/j.cam.2009.04.022
  29. T. Wang, L. M. Zhang, and F. Q. Chen, Numerical approximation for a coupled Schrodinger system, Chinese J. Comput. Phys. 25 (2008), 179-185. https://doi.org/10.3969/j.issn.1001-246X.2008.02.009
  30. A.-M. Wazwaz, Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities, Math. Comput. Modelling 43 (2006), no. 7-8, 802-808. https://doi.org/10.1016/j.mcm.2005.08.010
  31. A.-M. Wazwaz, A study on linear and nonlinear Schrodinger equations by the variational iteration method, Chaos Solitons Fractals 37 (2008), no. 4, 1136-1142. https://doi.org/10.1016/j.chaos.2006.10.009
  32. A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Nonlinear Physical Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-00251-9
  33. C. Yang, Q. Zhou, H. Triki, M. Mirzazadeh, M. Ekici, W. J. Liu, A. Biswas, and M. Belic, Bright soliton interactions in a (2 + 1)-dimensional fourth-order variable-coefficient nonlinear Schrodinger equation for the Heisenberg ferromagnetic spin chain, Nonlinear Dyn. 95 (2019).