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ON THE FINITENESS OF REAL STRUCTURES OF

PROJECTIVE MANIFOLDS
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Abstract. Recently, Lesieutre constructed a 6-dimensional projective

variety X over any field of characteristic zero whose automorphism group
Aut(X) is discrete but not finitely generated. As an application, he also

showed that X is an example of a projective variety with infinitely many
non-isomorphic real structures. On the other hand, there are also sev-

eral finiteness results of real structures of projective varieties. The aim

of this short paper is to give a sufficient condition for the finiteness of
real structures on a projective manifold in terms of the structure of the

automorphism group. To be more precise, in this paper we show that,

when X is a projective manifold of any dimension≥ 2, if Aut(X) does not
contain a subgroup isomorphic to the non-abelian free group Z ∗ Z, then

there are only finitely many real structures on X, up to R-isomorphisms.

1. Introduction and main results

Our concern of this paper is the finiteness or infiniteness of real structures
on a projective variety defined over the complex number field C. The finiteness
of real structures on a projective variety is known for several classes of compact
smooth manifolds. For example, minimal rational surfaces, minimal algebraic
surfaces of non-negative Kodaira dimension, and del Pezzo surfaces are known
to have a finite number of the isomorphism classes of real structures (see [8],
[4], and [11] for more details). In addition, the finiteness of real structures
of projective spaces, abelian varieties, and varieties of general type has been
known in the literature (see, e.g., [3], [11], and [12]).

On the other hand, recently in [9] Lesieutre constructed a 6-dimensional
projective variety X over any field of characteristic zero whose automorphism
group Aut(X) is discrete but not finitely generated. Further, he showed that X
is an example of a projective variety with infinitely many non-isomorphic real
structures, and answered a long standing open problem. After that, Dinh and
Oguiso showed in [5] that there is a smooth complex projective variety of any
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dimension ≥ 2 defined over the complex number field C whose automorphism
group is discrete and not finitely generated. As an application, they also showed
that their variety admits infinitely many real structures which are mutually
non-isomorphic over the real number field. Moreover, Oguiso showed in [10]
that there is a smooth projective surface, birational to some K3 surface, such
that the automorphism group is discrete and not finitely generated, over any
algebraically closed field of odd characteristic except precisely an algebraic
closure of the prime field.

In order to state our main results precisely, we next set up necessary no-
tation and definitions. A real structure σ on a projective variety X is an
anti-holomorphic involution on X. Two real structures σ and σ′ on X are
equivalent if there exists a C-automorphism ϕ of X such that σ′ ◦ ϕ = ϕ ◦ σ.
Thus, such an automorphism ϕ of X is equivariant with respect to those two
real structures σ and σ′, and it corresponds to an R-isomorphism between two
R-varieties X0 = X/〈σ〉 and X ′0 = X/〈σ′〉. Conversely, any R-isomorphism
between two R-varieties X0 and X ′0 corresponds to a C-automorphism between
their complexifications that is equivariant with respect to the natural real struc-
tures. As a consequence, the set of the equivalence classes of real structures
on a projective variety X corresponds bijectively to that of the isomorphism
classes of real structures on X. It has been shown in [3, 2.6] that the set of all
equivalence classes of real structures on X is given by H1(〈σ〉,Aut(X)). Here
〈σ〉 acts on Aut(X) by conjugation in such a way that

〈σ〉 ×Aut(X)→ Aut(X), (σ, ϕ) 7→ σ ◦ ϕ ◦ σ−1.

It is obvious that if Aut(X) is finite, then the number of real structures on
X should be finite. In particular, varieties of general type have a finite auto-
morphism group, so the finiteness of real structures on such varieties follows
immediately.

For a subgroup G of GL(m,C) with m ≥ 1, by the well-known Tits alter-
native theorem in [13] either G contains a subgroup isomorphic to Z ∗ Z or G
contains a solvable subgroup of finite index. Analogously, a theorem of Tits
type for any subgroup G of Aut(X) of a compact Kähler manifold X has been
shown in [15]. See also [6] for a previous result in case of any abelian subgroup
G of Aut(X) such that each non-trivial element of G is of positive entropy.

With these said, our main result is:

Theorem 1.1. Let X be a projective manifold of dimension n ≥ 2. If Aut(X)
does not contain a subgroup isomorphic to Z ∗ Z, then there are only finitely
many real structures on X, up to R-isomorphisms.

Remark 1.2. By the theorem of Tits type for any compact Kähler manifolds
in [15] mentioned above, the existence of such an automorphism group Aut(X)
as in Theorem 1.1 implies that there is a subgroup G of Aut(X) of finite
index such that the group G∗ given by the image of the representation of G to
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GL(NS(X)⊗Z C) is solvable and Zariski-connected. Refer to [15] or Theorem
3.1 for more details.

This theorem generalizes a result [2, Theorem 1] of Benzerga which has been
proved only for complex rational surfaces.

Corollary 1.3. Let X be a smooth complex rational surface, and let Aut∗(X)
be the image of the natural morphism from Aut(X) to O(Pic(X)) ⊂ GL(ρ(X),
Z), where ρ(X) denotes the rank of the Picard group Pic(X). If Aut∗(X) does
not contain a subgroup isomorphic to Z ∗ Z, then X has finitely many real
structures, up to R-isomorphisms.

By the results of Gromov [7] and Yomdin [14], for any automorphism ϕ ∈
Aut(X) one may define the topological entropy h(ϕ) by the logarithm of the
spectral radius of the automorphism ϕ∗ of the Néron-Severi group NS(X)⊗ZC.
Clearly the topological entropy h(ϕ) can be zero (or null) or positive. By
[1, Theorem 1], if a rational surface X has an infinite number of non-equivalent
real structures, then X is a blown-up of the projective space P2 at r points with
r ≥ 10 and has at least one automorphism of positive entropy. Theorem 1.1
shows that the converse of [1, Theorem 1] does not hold, in general. That is, the
existence of an automorphism of positive entropy on a projective manifold of
any dimension ≥ 2 does not necessarily imply the finiteness of real structures,
up to R-isomorphisms.

We organize this paper, as follows. In Section 2, we set up some basic
notation and collect a few important facts necessary for the proof of Theorem
1.1. Section 3 is devoted to the proof of Theorem 1.1.

2. Group cohomology of finite groups

The aim of this section is to briefly review some fundamental definitions
and facts necessary for the proof of Theorem 1.1, for the sake of reader’s con-
venience.

To begin with, we recall some definitions and results about non-abelian group
cohomology of finite groups (see [1, Section 2] for more details).

Let K be a finite group. A K-group A is a group on which K acts by
automorphisms in such a way that for any σ ∈ K

σ(ab) = σ(a)σ(b), a, b ∈ A.
In particular, if A is abelian, then it is called a K-module. The 0-th cohomology
group H0(K,A) of K with coefficients in A is defined by the set AK of the fixed
points of this action of K.

For a K-group A and each a ∈ A, there is a map, denoted by the same letter
a, given by

K → A, σ 7→ aσ := σ(a).

The map a : K → A is called a 1-cocycle if for any σ, τ ∈ K we have

aστ = aσ(aτ )σ = aσσ(aτ ).
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If K = 〈σ〉 ∼= Z/2, then the cocycle condition is equivalent to that of an element
aσ ∈ A such that aσσ(aσ) = e, where e denotes the identity element of A. The
set of all 1-cocycles is denoted by Z1(K,A). Two cocycles a and b in Z1(K,A)
are equivalent, denoted by a ∼ b, if there is an element c ∈ A such that for any
σ ∈ K

bσ = c−1aσcσ.

The first cohomology group H1(K,A) of K with coefficients in A is defined by
H1(K,A) = Z1(K,A)/ ∼.

If

0→ A
f→ B

g→ C → 0

is a short exact sequence of K-groups, then we have the following long exact
sequence of pointed sets

0→ AK → BK → CK → H1(K,A)
f∗

→ H1(K,B)
g∗→ H1(K,C)→ · · · .

Thus, if H1(K,C) and H1(K,A) are both finite, then H1(K,B) should be also
finite.

For the proof of Theorem 1.1, we also need the following fact (see [1, Theorem
2.4]).

Lemma 2.1. Let K be a finite group, and let A be a K-group. Then the
following statements hold:

(1) If A is a complex linear algebraic group with a real structure σ, then
H1(〈σ〉, A) is finite for the natural action of 〈σ〉 on A.

(2) If A contains a subgroup of finite index isomorphic to Zk for some non-
negative k ∈ Z, then H1(K,A) is finite, independent of the action of K
on A. In particular, if A is finite, i.e., k = 0, then H1(K,A) is always
finite.

3. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1, and continue to use the
notation in Section 2.

For the proof of Theorem 1.1, we first recall the theorem of Tits type for
compact Kähler manifolds as in [15, Theorem 1.1].

Theorem 3.1. Let X be a compact Kähler manifold of dimension n ≥ 2, and
let G be a subgroup of Aut(X). Then only one of the following two statements
holds:

(1) G contains a subgroup isomorphic to the non-abelian free group Z ∗ Z.
(2) There is a subgroup G1 of G of finite index such that the group G∗1 given

by the image of the representation of G1 to GL(H1,1(X)) is solvable
and Zariski-connected. Moreover, the set

N(G1) = {g ∈ G1 |h(g) = 0}
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consisting of all elements g ∈ G1 with null entropy is a normal subgroup
of G1 and the quotient group G1/N(G1) is a free abelian group Zk of
rank k ≤ n− 1.

In case of a projective manifold X, we may use NS(X) ⊗Z C instead of
H1,1(X) in the above theorem. To be more precise, let G be a group of auto-
morphisms of a projective manifold (or, more generally, variety) X. Then G
acts on certain cohomological spaces such as the Néron-Severi group NS(X) by
pulling back divisor classes, and thus we have the following homomorphism

p : G→ GL(NS(X)) = GL(ρ(X),Z),

where ρ(X) denote the rank of NS(X), called the Picard number of X.
From now on, we let G∗ (resp. G#) denote the image (resp. kernel) of the

homomorphism p from G to GL(NS(X)). In particular, if G = Aut(X), then
we have the following short exact sequence

(3.1) 0→ Aut#(X)→ Aut(X)
p→ Aut∗(X)→ 0,

where Aut#(X) denotes the kernel of p. The group Aut#(X) is a linear alge-
braic group, while Aut∗(X) is a discrete subgroup of GL(ρ(X),Z) (see [1, In-
troduction] for more details).

Now, we are ready to prove Theorem 1.1, as follows.

Proof of Theorem 1.1. As before, let X be a projective manifold of dimension
n ≥ 2. Assume that Aut(X) does not contain a subgroup isomorphic to the
free product Z ∗Z. Then it follows from Theorem 3.1 that there is a subgroup
G of Aut(X) of finite index such that G/N(X) is isomorphic to Zk for some
k ≤ n − 1. Here N(G) is a normal subgroup of Aut(X) which consists of all
elements of G with null entropy.

Let σ be a real structure on X. If there is no such a real structure on X,
we are done.

We need the following lemma.

Lemma 3.2. The first cohomology group H1(〈σ〉,Aut∗(X)) is finite.

Proof. By assumption and Theorem 3.1(2), Aut∗(X) contains a subgroup iso-
morphic to

G∗ ∼= G/N(X) ∼= Zk

of finite index for some integer k with 0 ≤ k ≤ n − 1. Thus it follows from
Lemma 2.1(2) that H1(〈σ〉,Aut∗(X)) should be finite. This completes the
proof. �

Next, as in (3.1) we consider the short exact sequence

(3.2) 0→ Aut#(X)→ Aut(X)
p→ Aut∗(X)→ 0.

Since X is a projective manifold, it follows from Lemma 2.1(1) (or [1, Theo-

rem 1.2]) that Aut#(X) is a complex linear algebraic group and admits a real
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structure induced from the real structure σ on X. Thus, by Lemma 2.1(1),

H1(〈σ〉,Aut#(X)) is finite with respect to the induced action of σ on Aut#(X).
Finally, we consider the long exact sequence

· · · → H0(〈σ〉,Aut∗(X))

→ H1(〈σ〉,Aut#(X))→ H1(〈σ〉,Aut(X))
p∗→ H1(〈σ〉,Aut∗(X))

→ · · ·

(3.3)

induced from the short exact sequence (3.2). Since H1(〈σ〉,Aut∗(X)) is shown
to be finite by Lemma 3.2, it is immediate to see from (3.3) together with the

finiteness of H1(〈σ〉,Aut#(X)) that

H1(〈σ〉,Aut(X))

should be also finite. This implies that the number of real structures of X is
finite, up to R-isomorphisms. This completes the proof of Theorem 1.1. �
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kählérienne compacte, Duke Math. J. 123 (2004), no. 2, 311–328. https://doi.org/

10.1215/S0012-7094-04-12323-1

[7] M. Gromov, On the entropy of holomorphic maps, Enseign. Math. (2) 49 (2003), no. 3-4,

217–235.

[8] V. Kharlamov, Topology, moduli and automorphisms of real algebraic surfaces, Milan
J. Math. 70 (2002), 25–37. https://doi.org/10.1007/s00032-002-0002-x

[9] J. Lesieutre, A projective variety with discrete, non-finitely generated automorphism

group, Invent. Math. 212 (2018), no. 1, 189–211. https://doi.org/10.1007/s00222-

017-0766-9

[10] K. Oguiso, A surface in odd characteristic with discrete and non-finitely generated au-
tomorphism group, preprint (2018); arXiv:1901.01351v1.

[11] F. Russo, The antibirational involutions of the plane and the classification of real del

Pezzo surfaces, in Algebraic geometry, 289–312, de Gruyter, Berlin, 2002.

[12] R. Silhol, Real abelian varieties and the theory of Comessatti, Math. Z. 181 (1982),
no. 3, 345–364. https://doi.org/10.1007/BF01161982

https://doi.org/10.1007/s00209-015-1581-x
https://doi.org/10.1007/s00209-015-1581-x
https://doi.org/10.1007/BF02566948
https://doi.org/10.1007/BFb0103960
https://doi.org/10.1007/BFb0103960
https://doi.org/10.1215/S0012-7094-04-12323-1
https://doi.org/10.1215/S0012-7094-04-12323-1
https://doi.org/10.1007/s00032-002-0002-x
https://doi.org/10.1007/s00222-017-0766-9
https://doi.org/10.1007/s00222-017-0766-9
https://doi.org/10.1007/BF01161982


ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS 115

[13] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. https://doi.

org/10.1016/0021-8693(72)90058-0

[14] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300.
https://doi.org/10.1007/BF02766215

[15] D.-Q. Zhang, A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176
(2009), no. 3, 449–459. https://doi.org/10.1007/s00222-008-0166-2

Jin Hong Kim

Department of Mathematics Education

Chosun University
Gwangju 61452, Korea

Email address: jinhkim11@gmail.com

https://doi.org/10.1016/0021-8693(72)90058-0
https://doi.org/10.1016/0021-8693(72)90058-0
https://doi.org/10.1007/BF02766215
https://doi.org/10.1007/s00222-008-0166-2

