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ALMOST SURE AND COMPLETE CONSISTENCY OF

THE ESTIMATOR IN NONPARAMETRIC REGRESSION

MODEL FOR NEGATIVELY ORTHANT DEPENDENT

RANDOM VARIABLES

Liwang Ding

Abstract. In this paper, the author considers the nonparametric re-

gression model with negatively orthant dependent random variables. The

wavelet procedures are developed to estimate the regression function. For
the wavelet estimator of unknown function g(·), the almost sure consis-

tency is derived and the complete consistency is established under the

mild conditions. Our results generalize and improve some known ones for
independent random variables and dependent random variables.

1. Introduction

Consider the estimation of a standard nonparametric regression model in-
volving a regression function g(·) which is defined on [0, 1].

(1.1) Yi = g(xi) + ϑi, (1 ≤ i ≤ n),

where xi are nonrandom design points, xi’s are denoted xi and taken to be
ordered 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, ϑi are random errors.

It is widely recognized that as an important method in data analysis, re-
gression function estimation is widely applied in filtering and prediction in
communications and control systems, classification and pattern recognition,
and econometrics. So the model (1.1) has got widely studies. The model (1.1)
has been used popularly in solving practical problems and variety of estimation
methods have been used to get access to estimators of g(·).
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For example, Georgiev [5] proposed the weighted estimator of nonpara-
metric regression functions ĝ(x) =

∑n
i=1Wi(x)Yi, where the weight function

Wi(x), i = 1, . . . , n, depends on the fixed design points x1, . . . , xn and on the
number of observations. In the independent case, the weighted estimator has
been considered by many researchers, such as Georgiev and Greblicki [7], Müller
[14], Georgiev [6] and the references therein. In various dependence cases, the
weighted estimator has also been investigated extensively, such as, Liang and
Jing [13] for asymptotic properties with NA errors, Yang [28] for asymptotic
normality with α-mixing errors, Li et al. [10] for Berry-Esseen bounds with
linear process generated by ϕ-mixing errors, Shen et al. [16] for consistency
with NSD errors, Wang and Si [23] for consistency with NOD errors, Bao et
al. [2] for consistency with END errors, Zhang et al. [29] for consistency with
WOD errors, and so on.

Since the 1990s, wavelet techniques attracted wide attention, many scholars
have tried to use wavelet methods in statistics. And the great adaptability
to the degree of smoothness of the underlying unknown curve is the major
advantage of the wavelet method. It is widely known that the hypotheses of
degrees of smoothness of the underlying function in the wavelet approach are
less restrictive. Hall and Patil [8] have clearly shown the wavelet estimators has
extraordinary local adaptability in handling discontinuities, and demonstrated
explicitly that discontinuities of the unknown curve with a negligible effect on
performance of wavelet curve estimator. Besides, compared to kernel estimate,
which tends to emphasize less on some fine local details of the curve like change
point, wavelet estimate can catch the local details and the global characteristics
of the curve from data. Owing to the existing efficient algorithms for wavelet
methods, the computation speed becomes another practical and important ad-
vantage of using wavelet methods over the kernel methods. Antoniadis et al. [1]
proposed a wavelet estimator of g(·) which has been studied extensively, and
subsequently many authors adopted wavelet methods to estimate various mod-
els. One may refer to Xue and Liu [27] for wavelet estimator in semiparametric
model with i.i.d. errors, Liang [12] for wavelet estimator in heteroscedastic
model with α-mixing errors, Zhou et al. [30] for wavelet estimator in varying
coefficient model with α-mixing errors, Ding et al. [3] for wavelet estimator in
nonparametric model with END errors, Ding et al. [4] for wavelet estimator in
heteroscedastic semiparametric model with ϕ-mixing errors, and so on.

Recall a nonparametric wavelet estimator of g(·) proposed by Antoniadis et
al. [1]

(1.2) ĝ(x) =

n∑
i=1

Yi

∫
Γi

Em(x, s)ds,

where Γi = [si−1, si), s0 = 0, sn = 1, si = (xi + xi+1)/2, i = 1, . . . , n. Hence
xi ∈ Γi for 1 ≤ i ≤ n.
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Let φ(·) be a given scaling function in the Schwarz space with order l. A
multiresolution analysis of L2(R) consists of an increasing sequence of the closed
subspace {Wm,m ∈ Z}, where Z is the integer set and L2(R) is a set of square
integral functions over the real line. Since {φ(x − k), k ∈ Z} is an orthogonal
family of L2(R) and W0 is the subspace spanned, if we define

φmk(x) = 2m/2φ(2mx− k), k ∈ Z,
then {φ0k, k ∈ Z} is an orthogonal basis of W0, and {φmk, k ∈ Z} is an orthog-
onal basis of Wm. The associated integral kernel of Wm is given by

Em(x, s) = 2mE0(2mx, 2ms) = 2m
∑
k∈Z

φ(2mx− k)φ(2ms− k).

Let us introduce the concept of negatively orthant dependence as follows.

Definition 1.1. A finite collection of random variables X1, X2, . . . , Xn is said
to be negatively orthant dependent (NOD, for short) if

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤
n∏
i=1

P(Xi > xi)

and

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤
n∏
i=1

P(Xi ≤ xi)

for all x1, x2, . . . , xn ∈ R. An infinite sequence {Xn, n ≥ 1} is said to be NOD
if every finite subcollection is NOD.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NOD if
for every n ≥ 1, {Xni, i ≥ 1} is NOD.

The notion of NOD sequences was first introduced by Joag-Dev and Proschan
[9]. Indeed, independent random sequences are NOD. Joag-Dev and Proschan
[9] showed that NA random sequences are NOD. They also proposed an ex-
ample in which Z = (Z1, Z2, Z3, Z4) possesses NOD, but does not possess NA.
Thus we know that NOD is weaker than NA. So studying the basic properties,
limiting behavior and some applications of NOD sequences are of great inter-
est. A number of results for NOD sequences have been investigated by many
authors. For example, Wang et al. [22] studied some exponential inequalities
and asymptotic approximation of inverse moment, Wang et al. [19] studied the
convergence rate for the strong law of large numbers, Wang et al. [20] studied
some properties and some strong limit results of the weighted sums, Li et al. [11]
studied the Bahadur representation for sample quantile, Wang et al. [21] stud-
ied complete convergence for arrays of rowwise NOD, Shen [15] studied strong
convergence rate for weighted sums of arrays of rowwise NOD, Wang and Si
[23] studied the complete consistency of estimator of nonparametric regression
model, Wang and Hu [18] studied asymptotic properties of least square estima-
tors in the simple linear errors-in-variables regression model, Wang et al. [24]
studied complete moment convergences, and so forth. However, few literature
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investigates consistency results for the wavelet estimator of the nonparametric
regression model with NOD random variables. The main purpose of the paper
is to investigate the consistency results for the estimator of the nonparametric
regression model with NOD random variables.

The rest of the paper is organized as follows. In the next section we introduce
assumptions and main results. Section 3 gives some preliminary lemmas, which
are used in the proofs of the main results. The proofs of the main results are
collected in Section 4.

Throughout the paper for any function g, we use c(g) to denote all continuity
points of the regression function g on [0, 1]. Let C and M denote positive
constants which may be different in various places. an = O(bn) or � and
an = o(bn) stand for an ≤ Cbn and limn→∞ an/bn = 0, respectively. Let I(·)
be the indicator function, log x = log max(x, e).

.
= means that each term of the

left equation is respectively denoted as the right signs. All limits are taken as
the sample size n tends to ∞, unless specified otherwise.

2. Assumptions and main results

In order to list some restrictions for φ and g, we give two definitions here.

Definition 2.1. A father wavelet φ is said to be β-regular (Sβ , β ∈ N) if for

any  ≤ β and any integer , then
∣∣∣dϕdx

∣∣∣ ≤ Ck(1 + |x|)−k, where Ck is a generic

constant depending only on k.

Definition 2.2. A function space Hν(ν > 1/2) is said to be Sobolev space
with order ν, i.e., if y ∈ Hν , then

∫
(1 + w2)ν |ŷ(w)|2dw < ∞, where ŷ is the

Fourier transform of y.

For convenience, the assumptions used in this paper are listed below.
(A1) g(·) ∈ Hν , and g(·) satisfies the Lipschitz condition of order γ > 0;
(A2) Scaling function φ(·) is β-regular with β ≥ ν, has a compact support

and satisfies the Lipschitz condition with order 1 and |φ̂(ε) − 1| = O(ε) as

ε→ 0, where φ̂ is the Fourier transform of φ;
(A3) max1≤i≤n |si − si−1| = O(n−1), m→∞ and 2−mn→∞ as n→∞;

(A4) 2m = O(n
1
3 ).

Based on the assumptions above, we can get the following results.

Theorem 2.1. Let {ϑi, 1 ≤ i ≤ n} be a sequence of NOD random variables
with Eϑi = 0 and sup1≤i≤n E|ϑi|t < ∞ for some t > 3

2 . Assume further that
assumptions (A1)-(A4) hold true, then ∀ x ∈ c(g),

gn(x)→ g(x) a.s., as n→∞.

Theorem 2.2. Let {ϑi, 1 ≤ i ≤ n} be a mean zero NOD sequence, which is
stochastically dominated by a random variable X with E|X|3 < ∞. Assume
further that assumptions (A1)-(A4) hold true, then ∀ x ∈ c(g),

gn(x)→ g(x) completely, as n→∞.
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Remark 2.1. Assumptions (A1)-(A3) are general basic assumptions of wavelet
estimation, which have been used by many authors, one can refer to Antoniadis
et al. [1], Liang [12], Li et al. [10], and so on. (A4) is assumed in Xue and
Liu [27]. So we can see that the assumptions in this paper are suitable and
reasonable.

3. Some lemmas

In this section, we will present some important lemmas which will be used
to prove the above main results.

Lemma 3.1 (Taylor et al. [17]). Let random variables X1, X2, . . . , Xn be NOD.
If f1, f2, . . . , fn are all nondecreasing (or all nonincreasing) functions, then
random variables f1(X1), f2(X2), . . ., fn(Xn) are also NOD.

Lemma 3.2 (Li et al. [10]). Suppose that assumptions (A1)-(A3) hold. Then

(i)
∣∣∣∫Γi

Em(x, s)ds
∣∣∣ = O

(
2m

n

)
, i = 1, 2, . . .,

(ii) sup
x

∫ 1

0
|Em(x, s)|ds ≤ C,

(iii)
n∑
i=1

∣∣∣∫Γi
Em(x, s)ds

∣∣∣ ≤ C,

(iv)
n∑
i=1

(∫
Γi
Em(x, s)ds

)2

= O
(

2m

n

)
.

Lemma 3.3 (Antoniadis et al. [1]). Suppose that assumptions (A1)-(A3) hold.
Then

Eĝ(x)− g(x) = O(n−γ) +O(ηm),

where

ηm =

 (1/2m)ν−1/2 1/2 < ν < 3/2,√
m/2m ν = 3/2,
1/2m ν > 3/2.

Lemma 3.4 (Wu [26]). Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of NOD
random variables with EXn = 0 and E|Xn|p <∞ for every n ≥ 1. Then there
exists a positive constant Cp depending only on p such that for every n ≥ 1,

E

(
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p)
≤ C logp n


n∑
i=1

E|Xi|p +

(
n∑
i=1

EX2
i

)p/2 .

Lemma 3.5 (Shen [15]). Let {Xn, n ≥ 1} be a sequence of NOD random
variables with zero means and finite second moments. Denote Sn =

∑n
i=1Xi

and B2
n =

∑n
i=1 EX2

i for each n ≥ 1. Then for all x > 0 and y > 0,

P(|Sn| ≥ x)

≤ 2P

(
max

1≤i≤n
|Xi| ≥ y

)
+ 2 exp

{
− x2

2(xy +B2
n)

(
1 +

2

3
log

(
1 +

xy

B2
n

))}
.
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For convenience, we give the definition of stochastic domination here.

Definition 3.1. A sequence {Xn, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive
constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1.

By the definition of stochastic domination and integration by parts, we can
get the following property for stochastic domination. For the details of the
proof, one can refer to Wu [25].

Lemma 3.6 (Wu [25]). Let {Xn, n ≥ 1} be an array of random variables which
is stochastically dominated by a random variable X. Then, for any α > 0 and
b > 0, the following two statements hold:

E|Xn|αI(|Xn| ≤ b) ≤ C1 (E|X|αI(|X| ≤ b) + bαP(|X| > b)) ,

E|Xn|αI(|Xn| > b) ≤ C2E|X|αI(|X| > b),

where C1 and C2 are positive constants. Consequently, E|Xn|α ≤ CE|X|α,
where C is a positive constant.

4. Proofs of the main results

Proof of Theorem 2.1. In view of (1.1) and (1.2) we have

|ĝ(x)− g(x)| ≤ |ĝ(x)− Eĝ(x)|+ |Eĝ(x)− g(x)|

=

∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsϑi

∣∣∣∣∣+ |Eĝ(x)− g(x)|.(4.1)

We see from Lemma 3.3 that

|Eĝ(x)− g(x)| = O(n−γ) +O(ηm).

Note that since m → ∞, then ηm =

 (1/2m)ν−1/2, 1/2 < ν < 3/2√
m/2m, ν = 3/2
1/2m, ν > 3/2

→ 0,

and for γ > 0, then n−γ → 0 as n→∞, which gives that

(4.2) |Eĝ(x)− g(x)| → 0 as n→∞.

Hence, by (4.1) and (4.2), we can see that in order to prove the Theorem 2.1,
it suffices to show that

(4.3)

n∑
i=1

∫
Γi

Em(x, s)dsϑi → 0 a.s., as n→∞.
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In the following, for fixed design point x ∈ [0, 1], without loss of generality, we
may assume that the weights

∫
Γi
Em(x, s)ds > 0. For any ε > 0, we choose

small positive constant such that κ < 2
3 and some large N ≥ 1, one can write

X
(1)
i

.
= − n−κI

(∫
Γi

Em(x, s)dsϑi < −n−κ
)

+

∫
Γi

Em(x, s)dsϑiI

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ ≤ n−κ)
+ n−κI

(∫
Γi

Em(x, s)dsϑi > n−κ
)
,

X
(2)
i

.
=

(∫
Γi

Em(x, s)dsϑi − n−κ
)
I

(
n−κ <

∫
Γi

Em(x, s)dsϑi <
ε

N

)
,

X
(3)
i

.
=

(∫
Γi

Em(x, s)dsϑi + n−κ
)
I

(
−n−κ >

∫
Γi

Em(x, s)dsϑi > −
ε

N

)
,

X
(4)
i

.
=

(∫
Γi

Em(x, s)dsϑi − n−κ
)
I

(∫
Γi

Em(x, s)dsϑi ≥
ε

N

)
+

(∫
Γi

Em(x, s)dsϑi + n−κ
)
I

(∫
Γi

Em(x, s)dsϑi ≤ −
ε

N

)
,

(4.4)

n∑
i=1

∫
Γi

Em(x, s)dsϑi =

n∑
i=1

X
(1)
i +

n∑
i=1

X
(2)
i +

n∑
i=1

X
(3)
i +

n∑
i=1

X
(4)
i .

Then, in order to prove
∑n
i=1

∫
Γi
Em(x, s)dsϑi → 0 a.s., it suffices to show

that
∑n
i=1X

(j)
i → 0 a.s., j = 1, 2, 3, 4.

Because of Eϑi = 0 and E|ϑi|t < ∞ for some t > 3
2 , so it follows from

Lemma 3.2 and (A4) that∣∣∣∣∣E
(

n∑
i=1

X
(1)
i

)∣∣∣∣∣ ≤
n∑
i=1

{
n−κP

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > n−κ
)

+ E

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ I (∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > n−κ
)}

≤
n∑
i=1

n−κntκE

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣t
≤ Cn−κntκ

n∑
i=1

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣t E|ϑi|t

≤ Cnκ(t−1)

(
max

1≤i≤n

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣)t−1 n∑
i=1

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣
≤ Cn−(t−1)( 2

3−κ) → 0 as n→∞.(4.5)
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Firstly, to prove
∑n
i=1X

(1)
i → 0 a.s., we need only to show that

(4.6)

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

X
(1)
i − E

(
n∑
i=1

X
(1)
i

)∣∣∣∣∣ > ε

)
<∞.

It is obvious that for fixed x ∈ c(g),
{
X

(1)
i , 1 ≤ i ≤ n

}
is still an NOD sequence

by the definition of X
(1)
i and Lemma 3.1. So, by Lemma 3.4, it follows

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

X
(1)
i − E

(
n∑
i=1

X
(1)
i

)∣∣∣∣∣ > ε

)

≤ C

∞∑
n=1


n∑
i=1

E
∣∣∣X(1)

i

∣∣∣r +

(
n∑
i=1

E
∣∣∣X(1)

i

∣∣∣2)r/2
 .(4.7)

Taking r > max
{
t,

5
3 +tκ− 2

3 t

κ , 2
(2−t)κ+ 2

3 (t−1)
, 3
}

, we have by Lemma 3.2 and

(A4) that

∞∑
n=1

n∑
i=1

E
∣∣∣X(1)

i

∣∣∣r
≤ C

∞∑
n=1

n∑
i=1

{
n−rκP

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > n−κ
)

+ E

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣r I (∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ ≤ n−κ)}
≤ C

∞∑
n=1

n∑
i=1

n−rκntκE

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣t
≤ C

∞∑
n=1

n−(r−t)κ
(

max
1≤i≤n

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣)t−1 n∑
i=1

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣
≤ C

∞∑
n=1

n−((r−t)κ+ 2
3 (t−1)) <∞.(4.8)

While 3
2 < t ≤ 2, thus

∞∑
n=1

(
n∑
i=1

E
∣∣∣X(1)

i

∣∣∣2)r/2

≤ C

∞∑
n=1

{
n∑
i=1

n−2κP

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > n−κ
)

+ E

∣∣∣∣∫
Ani

Em(x, s)dsϑi

∣∣∣∣2 I (∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ ≤ n−κ)
}r/2
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≤ C

∞∑
n=1

{
n∑
i=1

n−κ(2−t)E

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣t
}r/2

≤ C

∞∑
n=1

n−((2−t)κ+ 2
3 (t−1))r/2 <∞.(4.9)

On the other hand, while t > 2, by supi Eϑ2
i <∞, thus

∞∑
n=1

(
n∑
i=1

E
∣∣∣X(1)

i

∣∣∣2)r/2

≤ C

∞∑
n=1

{
n∑
i=1

(
n−2κP

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > n−κ
)

+

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣2
)}r/2

≤ C
∞∑
n=1

n−((2−t)κ+ 2
3 (t−1))r/2 + C

∞∑
n=1

n−r/3

< ∞.(4.10)

From (4.8)-(4.10) and combining (4.7), we can obtain (4.6), which together
with (4.5) yields that

(4.11)

n∑
i=1

X
(1)
i → 0 a.s..

Next, note that 0 ≤ X
(2)
i < ε

N ,
∣∣∣∑n

i=1X
(2)
i

∣∣∣ =
∑n
i=1X

(2)
i > ε means that

there are at least N i′ s such that X
(2)
i 6= 0, then we can derive

P

(∣∣∣∣∣
n∑
i=1

X
(2)
i

∣∣∣∣∣ > ε

)
≤ P

(
there are at least N i′ s such thatX

(2)
i 6= 0

)
≤

∑
1≤i1<···<iN≤n

P
(
X

(2)
i1
6= 0, . . . , X

(2)
iN
6= 0
)

≤
∑

1≤i1<···<iN≤n

P

(∫
Γi1

Em(x, s)dsϑi1 > n−κ, . . . ,

∫
ΓiN

Em(x, s)dsϑiN > n−κ

)

≤ M
∑

1≤i1<···<iN≤n

P

(∫
Γi1

Em(x, s)dsϑi1 > n−κ

)
· · ·P

(∫
ΓiN

Em(x, s)dsϑiN > n−κ

)
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≤ M

(
n∑
i=1

P

(∫
Γi

Em(x, s)dsϑi > n−κ
))N

≤M

(
n∑
i=1

P

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > n−κ
))N

≤ C

(
n∑
i=1

ntκE

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣t
)N

≤ Cn−(( 2
3−κ)t− 2

3 )N ,

obviously, we have by letting N ≥ 1 that
(
( 2

3 − κ)t− 2
3

)
N > 1. Thus, we

obtain
∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

X
(2)
i

∣∣∣∣∣ > ε

)
<∞,

which gives

(4.12)

n∑
i=1

X
(2)
i → 0 a.s..

Note that − ε
N < X

(3)
i ≤ 0,

∣∣∣∑n
i=1X

(3)
i

∣∣∣ = −
∑n
i=1X

(3)
i > ε means that

there are at least N i′ s such that X
(3)
i 6= 0. And similarly to the proof of∑n

i=1X
(2)
i → 0 a.s., one may prove that

(4.13)

n∑
i=1

X
(3)
i → 0 a.s..

Finally, notice that

n∑
i=1

X
(4)
i ≤

n∑
i=1

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ I (∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ ≥ ε

N

)

+ n−κ
n∑
i=1

I

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ ≥ ε

N

)

≤ n−
2
3

n∑
i=1

|ϑi|I
(
|ϑi| ≥ Ci

2
3

)
+ n−κ

n∑
i=1

I
(
|ϑi| ≥ Ci

2
3

)
.(4.14)

Writing Tn
.
=
∑n
j=1 j

− 2
3 |ϑj |I

(
|ϑj | ≥ Cj

2
3

)
, the {Tn} almost sure convergence

is proved by subsequence method, and using natural sequence with order t sum
inequality, then for m ≥ n ≥ 1 we have

E|Tm − Tn| =
m∑

j=n+1

j−
2
3 E|ϑj |I

(
|ϑj | ≥ Cj

2
3

)
�

m∑
j=n+1

j
2
3 (1−t)− 2

3
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�
∞∑

j=n+1

j−
2
3 t � n−

2
3 t+1 → 0 as n→∞.

Here, {Tn} is a Cauchy sequence in L1, thus there exists random variable T ,
satisfying E|T | <∞ and E|Tn − T | → 0. Then it follows that for ∀ ε > 0,

P(|T2k − T | > ε)� E|T2k − Tn|+ E|Tn − T |
� lim sup

n
E|T2k − Tn|

�
∞∑

j=2k+1

j−
2
3 t � 2−k( 2

3 t−1).

It is easily seen that
∞∑
k=1

P(|T2k − T | > ε) <∞.

This implies that

T2k → T.

In addition,

P

(
max

2k−1<n≤2k
|Tn − T2k−1 | > ε

)
� P(|T2k − T2k−1 | > ε)

�
2k∑

j=2k−1+1

j−
2
3 t � 2−k( 2

3 t−1),

and similarly,
∞∑
k=1

P

(
max

2k−1<n≤2k
|Tn − T2k−1 | > ε

)
<∞,

so we have that for k →∞,

max
2k−1<n≤2k

|Tn − T2k−1 | → 0.

Consequently, Tn and T2k have the same limit in the sense of almost sure
convergence, and thus Tn → T a.s., which shows that

∞∑
n=1

n−
2
3 |ϑn|I

(
|ϑn| ≥ Cn

2
3

)
<∞ a.s..

Therefore, applying Kronecker’s lemma, one gets

(4.15) n−
2
3

n∑
i=1

|ϑi|I
(
|ϑi| ≥ Ci

2
3

)
→ 0 a.s..

Similarly, we can obtain
∞∑
n=1

n−κI
(
|ϑn| ≥ Cn

2
3

)
<∞ a.s..
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Thus, applying Kronecker’s lemma again, one has

(4.16) n−κ
n∑
i=1

I
(
|ϑi| ≥ Ci

2
3

)
→ 0 a.s..

From (4.15)-(4.16), and combining (4.14), it follows

(4.17)

n∑
i=1

X
(4)
i → 0 a.s..

Hence (4.3) follows by (4.11)-(4.13), (4.17) and (4.4) immediately. This com-
pletes the proof of the theorem. �

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1, it suffices
to show that

(4.18)

n∑
i=1

∫
Γi

Em(x, s)dsϑi → 0 completely, as n→∞.

In fact, to prove (4.18) holds for any x ∈ c(g), we need only to prove that for
all ε > 0,

(4.19)

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsϑi

∣∣∣∣∣ > ε

)
<∞.

Without loss of generality, we still assume that
∫

Γi
Em(x, s)ds > 0. For any

ε > 0, we choose positive integer N (to be specified later) and small positive
constant $ such that $ < 2

9 . Denote for 1 ≤ i ≤ n that

X
(1)
i

.
= ϑiI

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ ≤ n−$)
− 1∫

Γi
Em(x, s)ds

n−$I

(∫
Γi

Em(x, s)dsϑi < −n−$
)

+
1∫

Γi
Em(x, s)ds

n−$I

(∫
Γi

Em(x, s)dsϑi > −n−$
)
,

X
(2)
i

.
=

(
ϑi −

1∫
Γi
Em(x, s)ds

n−$

)
I

(
n−$ <

∫
Γi

Em(x, s)dsϑi ≤
ε

N

)
,

X
(3)
i

.
=

(
ϑi +

1∫
Γi
Em(x, s)ds

n−$

)
I

(
− ε

N
≤
∫

Γi

Em(x, s)dsϑi < −n−$
)
,

X
(4)
i

.
=

(
ϑi +

1∫
Γi
Em(x, s)ds

n−$

)
I

(∫
Γi

Em(x, s)dsϑi < −
ε

N

)

+

(
ϑi −

1∫
Γi
Em(x, s)ds

n−$

)
I

(∫
Γi

Em(x, s)dsϑi >
ε

N

)
.
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It is easy to check that X
(1)
i +X

(2)
i +X

(3)
i +X

(4)
i = ϑi, this yields that

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsϑi

∣∣∣∣∣ > 4ε

)

≤
∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(1)
i

∣∣∣∣∣ > ε

)

+

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(2)
i

∣∣∣∣∣ > ε

)

+

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(3)
i

∣∣∣∣∣ > ε

)

+

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(4)
i

∣∣∣∣∣ > ε

)
.
= T1 + T2 + T3 + T4.

Hence, in order to prove (4.19), it suffices to show that T1 < ∞, T2 < ∞,
T3 <∞ and T4 <∞.

Firstly, since max1≤i≤n

∣∣∣∫Γi
Em(x, s)ds

(
X

(1)
i − EX

(1)
i

)∣∣∣ ≤ 2n−$ for every

n ≥ 1, so that

(4.20) P

(
max

1≤i≤n

∣∣∣∣∫
Γi

Em(x, s)ds
(
X

(1)
i −EX

(1)
i

)∣∣∣∣≤2n−$
)

=1 for every n≥1.

Base on
∣∣∣X(1)

i

∣∣∣ ≤ |ϑi|, so it follows from Lemmas 3.2, 3.6 and (A4) that

B2
n
.
=

n∑
i=1

E

(∫
Γi

Em(x, s)ds
(
X

(1)
i − EX

(1)
i

))2

≤ C
n∑
i=1

(∫
Γi

Em(x, s)ds

)2

EX2 = o
(
(log n)−1

)
.(4.21)

In particular,
{∫

Γi
Em(x, s)ds

(
X

(1)
i − EX

(1)
i

)
, 1 ≤ i ≤ n

}
are still NOD by

Lemma 3.1. Using Lemma 3.5 with x = ε and y = 2n−$, from (4.20)–(4.21),
we get

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)ds
(
X

(1)
i − EX

(1)
i

)∣∣∣∣∣ > ε

)

≤ 2

∞∑
n=1

P

(
max

1≤i≤n

∣∣∣∣∫
Γi

Em(x, s)ds
(
X

(1)
i − EX

(1)
i

)∣∣∣∣ > 2n−$
)

+ C

∞∑
n=1

exp

{
− ε2

2 (2εn−$ + o ((log n)−1))

}
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≤ C

∞∑
n=1

exp{−2 log n} <∞.

Thus, to prove T1 <∞, we need only to prove

(4.22)

∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsEX
(1)
i

∣∣∣∣∣→ 0 as n→∞.

Note that Eϑi = 0 and $ < 2
9 , it follows by Markov’s inequality, Lemmas 3.2,

3.6 and (A4) that∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsEX
(1)
i

∣∣∣∣∣
≤ n2$

n∑
i=1

E

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣3 + n2$
n∑
i=1

E

∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣3
≤ Cn2$

(
max

1≤i≤n

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣) n∑
i=1

(∫
Γi

Em(x, s)ds

)2

≤ Cn2$−4/3 → 0 as n→∞.

Hence, (4.22) holds, this leads to T1 <∞.

Next, we will show that T2 < ∞. Note that 0 <
∫

Γi
Em(x, s)dsX

(2)
i ≤ ε

N ,

we can find ∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(2)
i

∣∣∣∣∣ =

n∑
i=1

∫
Γi

Em(x, s)dsX
(2)
i > ε

means that there are at least N integers such that
∫

Γi
Em(x, s)dsX

(2)
i 6= 0.

Thus, we have by Lemmas 3.2, 3.6 and (A4) that

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(2)
i

∣∣∣∣∣ > ε

)

≤
∑

1≤i1<i2<···<iN≤n

P

(∫
Γi1

Em(x, s)dsX
(2)
i1
6= 0,

∫
Γi2

Em(x, s)dsX
(2)
i2
6= 0, . . . ,

∫
ΓiN

Em(x, s)dsX
(2)
iN
6= 0

)

≤
∑

1≤i1<i2<···<iN≤n

P

(∫
Γi1

Em(x, s)dsϑi1 > n−$

)

× P

(∫
Γi2

Em(x, s)dsϑi2 > n−$

)
· · ·P

(∫
ΓiN

Em(x, s)dsϑiN > n−$

)
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≤

(
n∑
i=1

P

(∫
Γi

Em(x, s)dsϑi > n−$
))N

≤

(
C

n∑
i=1

P

(∣∣∣∣∫
Γi

Em(x, s)dsX

∣∣∣∣ > n−$
))N

≤ C

(
n3$

n∑
i=1

E

∣∣∣∣∫
Γi

Em(x, s)dsX

∣∣∣∣3
)N

≤ C

(
n3$

(
max

1≤i≤n

∣∣∣∣∫
Γi

Em(x, s)ds

∣∣∣∣) n∑
i=1

(∫
Γi

Em(x, s)ds

)2
)N

≤ Cn−(4/3−3$)N .

Since $ < 2
9 , choosing some large integer N such that ( 4

3 − 3$)N > 1. There-
fore, T2 <∞.

Noting that − ε
N ≤

∫
Γi
Em(x, s)dsX

(3)
i < 0, we can find∣∣∣∣∣

n∑
i=1

∫
Γi

Em(x, s)dsX
(3)
i

∣∣∣∣∣ = −
n∑
i=1

∫
Γi

Em(x, s)dsX
(3)
i > ε

means that there are at least N integers such that
∫

Γi
Em(x, s)dsX

(3)
i 6= 0.

Therefore, similar to the proof of T2 <∞, we can get T3 <∞.
Finally, we will show that T4 <∞. we have by Lemma 3.6 and E|X|3 <∞

that

T4 =

∞∑
n=1

P

(∣∣∣∣∣
n∑
i=1

∫
Γi

Em(x, s)dsX
(4)
i

∣∣∣∣∣ > ε

)

≤
∞∑
n=1

P

(
n⋃
i=1

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > ε

N

))

≤ C

∞∑
n=1

n∑
i=1

P

(∣∣∣∣∫
Γi

Em(x, s)dsϑi

∣∣∣∣ > ε

N

)

≤ C

∞∑
n=1

nP
(
|X| > Cn2/3

)
= C

∞∑
n=1

n

∞∑
k=n

P
(
k2/3 < |X| ≤ (k + 1)2/3

)
= C

∞∑
k=1

P
(
k2/3 < |X| ≤ (k + 1)2/3

) k∑
n=1

n

≤ C

∞∑
k=1

k2P
(
k2/3 < |X| ≤ (k + 1)2/3

)
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≤ C

∞∑
k=1

E|X|3I
(
k2/3 < |X| ≤ (k + 1)2/3

)
≤ CE|X|3 <∞.

This completes the proof of the theorem. �
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