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ON LCD CODES OVER FINITE CHAIN RINGS

Yılmaz Durğun

Abstract. Linear complementary dual (LCD) codes are linear codes

that intersect with their dual trivially. LCD cyclic codes have been known
as reversible cyclic codes that had applications in data storage. Due to a

newly discovered application in cryptography, interest in LCD codes has

increased again. Although LCD codes over finite fields have been exten-
sively studied so far, little work has been done on LCD codes over chain

rings. In this paper, we are interested in structure of LCD codes over

chain rings. We show that LCD codes over chain rings are free codes. We
provide some necessary and sufficient conditions for an LCD code C over

finite chain rings in terms of projections of linear codes. We also showed
the existence of asymptotically good LCD codes over finite chain rings.

1. Introduction

A linear code with a complementary dual (an LCD) is defined to be a lin-
ear code C satisfying C ∩ C⊥ = {0}. The LCD code which is also known
as reversible code was first introduced by Massey in [13]. Following his first
study, Massey also showed the existence of asymptotically good LCD codes
in [14]. The LCD codes were later shown to meet the asymptotic Gilbert-
Varshamov bound using the hull dimension spectra of linear codes by Sendrier
in [19]. Furthermore, Yang and Massey in [22] provided a necessary and suf-
ficient condition under which a cyclic code to have a complementary dual.
Quasi-cyclic LCD codes were then analyzed by Esmaeili and Yari in [5] and
their asymptotic behaviors were explored by Güneri et al. in [7]. Recently,
several constructions of LCD codes were presented together with their applica-
tions against side-channel attacks (SCA) by Carlet and Guilley [2]. Following,
Mesnager et al. [16] investigated the construction of algebraic geometry LCD
codes which could be resistant against SCA. In [10], Jin constructed some fam-
ilies of Maximum Distance Separable (MDS) codes with complementary duals,
through generalized Reed-Solomon codes. Dougherty et al. [4] provided a linear
programming bound on the largest size of an LCD code of given length and
minimum distance. In [3], Carlet et al. completely determined all LCD codes
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over finite fields Fq for q > 3. There are many recent studies on LCD codes
over finite fields [11,20,23].

All the mentioned studies above have investigated the LCD codes over finite
fields. LCD codes over chain rings, instead, were examined by Liu and Liu
in [12]. Their study, which inspired our paper, provided a necessary condition
for an LCD code over finite chain rings, see [12, Theorem 3.4]. We improved
this result by giving necessary and sufficient conditions for an LCD code over
finite chain rings. Besides, in terms of a generator matrix, they provided a
sufficient condition for a linear code C over a chain ring to be LCD code, see
[12, Theorem 3.5]. Following this result, they gave an example to show that the
given sufficient condition is not necessary, see [12, Example 2]. We showed that
the given example is incorrect and the provided sufficient condition is, indeed,
necessary. Furthermore, the authors introduced a new condition, in addition
to the existing one, to show the converse of [12, Theorem 3.9]. However, we
showed that the new condition itself is already necessary and sufficient for a
linear code to be LCD.

This paper is organized as follows. Section 2 provides a background knowl-
edge on finite chain rings. In Section 3, we generalize some results for linear
codes given in [18]. The depicted results in Section 3 are then applied to give
sufficient and necessary conditions for LCD code linear codes over a finite chain
ring in Section 4. Our results provided in Section 4 are as follows. An LCD
code over a finite chain ring is a free code (Proposition 4.1). A linear code
C with generator matrix G in standard form is LCD code if and only if the
k × k matrix GGtr is invertible, where k is the number of rows of G (Corol-
lary 4.2). For a linear code C over a chain ring R with γ a fixed generator of
the maximal ideal of R and ν the nilpotency index of γ, C is an LCD code
over R if and only if ψt(C) is an LCD code and ψt(C) = ψt((C : γν−t)) over
R/γtR for some 1 ≤ t < ν, ψt being the canonical projections R→ R/γtR and
(C : r) = {e ∈ Rn | re ∈ C}, if and only if γj−1v does not belong to C ∩C⊥ for
any nonzero v = (v1, . . . , vn) ∈ Fnq , where Fq is the residue field of R (Theorem
4.5, Theorem 4.8).

2. Preliminaries

2.1. Finite chain rings

We begin with the definition and some properties of finite chain rings, based
on mainly [15].

Definition. A finite commutative ring with identity 1 6= 0 is called a finite
chain ring if its ideals are linearly ordered by inclusion.

A chain ring has a unique maximal ideal, i.e., that is a local ring. While not
all chain rings are commutative, we shall assume that all rings in this paper
are commutative. It is well known, and not difficult to prove, that a ring is a
finite chain ring if and only if it is a finite local principal ideal ring. A simple
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example of a finite chain ring is the ring Zpa of integers modulo pa, for some
prime p and a ≥ 1.

Let R be a finite chain ring, m the unique maximal ideal of R, and let γ
be a generator of the unique maximal ideal m. Then m = 〈γ〉 = Rγ, where
Rγ = 〈γ〉 = {βγ |β ∈ R}. We have

· · · ⊆ 〈γi〉 ⊆ · · · ⊆ 〈γ1〉 ⊆ 〈γ0〉 = R.

It is well known that there exists i such that 〈γi〉 = 0. Let ν be the minimal
number such that 〈γν〉 = 0. We will call ν the nilpotency index of γ.

Let Fq ∼= R/m = R/γR be the residue field with characteristic p, where p
is a prime number. This implies that there exist integers q and r such that
|Fq| = q = pr. The cardinality of R is |R| = |Fq|ν ; see for example [18, Lemma
2.4]. Throughout this paper, R denotes a finite chain ring with 1 6= 0, γ a
fixed generator of the maximal ideal of R, ν the nilpotency index of γ. We set
α = γν−1.

The proof of the following lemma is illustrated in [15, p. 340].

Lemma 2.1. For any 0 6= a ∈ R there is a unique integer i; 0 ≤ i ≤ ν such
that a = uγi, with u a unit. The unit u is unique modulo γν−i only.

Corollary 2.2. If 1 ≤ i < j ≤ ν and γic ∈ γjR, then c ∈ γj−iR. In particular,
if γic = 0, then c ∈ γν−iR.

There is a canonical projection homomorphism from R onto Fq ∼= R/γR.
Denote by r the image of an element r ∈ R under this projection. In [18],
Norton and Sălăgean proved the following lemma.

Lemma 2.3. Let V ⊆ R be a set of representatives for the equivalence classes of
R under congruence modulo γ. (Equivalently, we can define V to be a maximal
subset of R with the property that r1 6= r2 for all r1, r2 ∈ R, r1 6= r2.) Then,

(1) for any v ∈ R there exist unique r0, . . . , rν−1 ∈ V such that v =∑ν−1
i=0 riγ

i;
(2) |V | = |R/γR| = |Fq|;
(3) |R/γjR| = |〈γj〉| = |Fq|ν−j for 0 ≤ j ≤ ν − 1.

For any two elements a and b of a ring, we will write a | b for a divides b. For
any constant r ∈ R and any c ∈ Rn we denote by rc the usual multiplication of
a vector by a scalar. Also, for a set C ⊆ Rn we write rC for the set {rc | c ∈ C}.
We will say that a vector c ∈ Rn is divisible by a constant r ∈ R, and write
r | c, if all entries of c are divisible by r. Lemma 2.1 implies that for any c ∈ Rn
there is a unique i such that c = γie, 0 ≤ i ≤ ν − 1, e ∈ Rn and γ - e. The
R-module αRn also has the structure of Fq-vector space, with multiplication
of a vector αc ∈ αRn by b ∈ Fq defined as usual to be aαc where a ∈ R is an
element for which ā = b.

Lemma 2.4 ([18, Lemma 2.9]). Let 0 ≤ i ≤ ν − 1. The map ϕi : γiRn →
(R/γv−iR)n given by ϕi(γ

ic) = (c1 + γv−iR, c2 + γv−iR, . . . , cn + γv−iR) for



40 Y. DURĞUN

any c = (c1, c2, . . . , cn) ∈ Rn is an isomorphism of R and of R/γv−iR-modules.
In particular ϕ : αRn → Fnq given by ϕ(αc) = c̄ is an isomorphism of Fq-vector
spaces.

2.2. Linear algebra over R

The set of all m × l matrices over R will be represented by Mm×l(R). For
A ∈Mm×l(R), we denote the transpose of the matrix A by Atr. Given matrices
A of size m × l and B of size m × l, we use

(
A B

)
to denote the matrix of

size m × (l + l) formed by concatenating A and B. If C is another matrix of
size m× l, the (m+m)× l matrix (AC ) is similarly defined (by concatenating
vertically). We also let 0 denote the zero matrix, where the size will either be
obvious from the context or specified whenever necessary. Similarly, we denote
the m × m identity matrix by Im, or simply I if the size is clear from the
context.

Definition ([6]). For any integer t ≥ 1, let ai = (ai1, . . . , ain) ∈ Rn, where
i = 1, . . . , t. The vectors a1, . . . , at are said to be linearly dependent if there
exists (b1, . . . , bt) in the set difference Rt \ {0} such that b1a1 + · · ·+ btat = 0;
otherwise, a1, . . . , at are said to be linearly independent.

Definition ([6]). Let A = (aij)m×l be in Mm×l(R).

(1) If the rows of A are linearly independent, then we say that A is a
full-row-rank (FRR) matrix.

(2) If there is an l ×m matrix B over R such that AB = I, then we say
that A is right-invertible and B is a right inverse of A.

(3) If m = l and the determinant detA is a unit of R, then we say that A
is non-singular.

The following corollary follows from a typical linear algebra argument.

Corollary 2.5 ([6, Corollary 2.8]). Let A = (aij)m×l be in Mm×l(R). Then,
A is invertible if and only if A is non-singular if and only if A is FRR.

2.3. Codes over R

Let n ≥ 1 be a fixed natural number. By a (block) code of length n over Rν
we will mean a nonempty subset of Rnν . We will only consider codes that are
different from 0, and n will always denote the length of the code. The code is
called linear if it is an Rν-submodule of Rnν . From now on, by “code” we mean
“linear code”.

For a code C, we define the rank of C, denoted by rank(C), to be the
minimum number of generators of C and the free rank of C, denoted by free
rank(C), to be the maximum of the ranks of free R-submodules of C. Codes
where the rank is equal to the free rank are called free codes. For any vector over
Rν , we define the Hamming weight to be the number of non-zero coordinates.
We denote by d the minimum Hamming weight of the code, which is the smallest
of all the Hamming weights of all non-zero vectors in the code. We attach
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to the ambient space the following inner product: for v = (v1, . . . , vn) and
w = (w1, . . . , wn) in Rn, let [v, w] =

∑n
i=1 viwi. The dual (orthogonal) of the

code, denoted by C⊥, is defined by

C⊥ = {w ∈ Rn | [v, w] = 0,∀v ∈ C}.
It is evident that C⊥ is linear. We know from [21] that |C||C⊥| = |R|n if R

is a Frobenius ring, where |R| denotes the cardinality of R. We also know that
any chain ring is Frobenius.

The structure of codes for R = Zpa , is described in [1, p. 22]. The following
structural results for codes over finite chain rings can be found in [18].

Definition (Generator matrix). Let C be a code over R. A matrix G is called
a generator matrix for C if the rows of G span C and none of them can be
written as a linear combination of the other rows of G.
G is called a generator matrix for C in standard form if after a suitable

permutation of the coordinates,

(1) G =


Ik0 A0,1 A0,2 A0,3 . . . A0,t−1 A0,ν

0 γIk1 γA1,2 γA1,3 . . . γA1,ν−1 γA1,ν

0 0 γ2Ik2 γ2A2,3 . . . γ2A2,ν−1 γ2A2,ν

...
...

...
... . . .

...
...

0 0 0 0 . . . γν−1Ikν−1
γν−1Aν−1,ν

 ,

where the columns are grouped into blocks of sizes k0, k1, . . . , kν−1, n−
∑ν−1
i=0 ki

with ki ≥ 0. Note that all the entries in γiAi,j (0 ≤ i ≤ ν − 1, 1 ≤ j ≤ ν)
are in 〈γi〉. A code with generator matrix of this form is said to be have type
{k0, k1, . . . , kν−1}.

The generator matrix in standard form G is associated to the matrix A,
where

(2) A =


Ik0 A0,1 A0,2 A0,3 . . . A0,ν−1 A0,ν

0 Ik1 A1,2 A1,3 . . . A1,ν−1 A1,ν

0 0 Ik2 A2,3 . . . A2,ν−1 A2,ν

...
...

...
... . . .

...
...

0 0 0 0 . . . Ikν−1
Aν−1,ν

 =


A0

A1

A2

...
Aν−1

 .

Note that any rows in A can not be divided by γ.

For the following results, see [18].

Theorem 2.6. Any linear code C has a generator matrix in standard form.
All generator matrices in standard form for a linear code C have the same

parameters k0, k1, . . . , kν−1 and |C| = |Fq|
∑ν−1
i=0 (ν−i)ki .

This theorem justifies the following notation.

Definition. Let C be a linear code. We denote by k(C) the number of rows
of a generating matrix G in standard form for C, and for i = 0, . . . , ν − 1 we
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denote by ki(C) the number of rows of G that are divisible by γi but not by

γi+1. Clearly, k(C) =
∑ν−1
i=0 ki(C).

We define kν = n−
∑ν−1
i=0 ki. The following lemma is immediate, see [9] or

[18].

Lemma 2.7. Let C be a code of type {k0, k1, . . . , kν−1}. Then C⊥ is a code of
type {kν , kν−1, . . . , k1}.

A linear code is called free if it is a free R-submodule.

Corollary 2.8 ([18]). Let C be a linear code. The following assertions are
equivalent:

(1) C is a free code.
(2) Any generator matrix in standard form for C is of the form (Ik(C)|M)

for some matrix M .
(3) k(C) = k0(C).

3. Projections and lifts of codes over R

In this section, some results for linear codes over a finite chain ring given in
[18] are generalized. Recall that R stands for a finite chain ring with 1 6= 0, γ
a fixed generator of the maximal ideal of R, ν the nilpotency index of γ and
Fq ∼= R/γR. Let T ∗(R) := {b ∈ R : b 6= 0, bq = b}. The set T (R) = T ∗(R)∪{0}
is called Teichmüller set of R. For every element a ∈ R, there exists unique
(a0, a1, . . . , aν−1) ∈ T (R)ν−1 such that a = a0 + a1γ+ · · ·+ aν−1γ

ν−1 (see [8]).
The operations over R are presented as

ν−1∑
l=0

alγ
l +

ν−1∑
l=0

blγ
l =

ν−1∑
l=0

(al + bl)γ
l,

ν−1∑
l=0

alγ
l.

ν−1∑
l′=0

bl′γ
l′ =

ν−1∑
s=0

(
∑
l+l′=s

albl′)γ
s.

For a positive integers t < ν, we define a map as follows:

ψt : R→ R/γtR,

ν−1∑
l=0

alγ
l →

t−1∑
l=0

alγ
l + γtR.

In this case, it can be seen that

ψt(a+ b) = ψt(a) + ψt(b), ψt(ab) = ψt(a)ψt(b)

for any a, b ∈ R. The map ψt is said to be a canonical projection from R
to R/γtR. Note that the map ψt can also be extended naturally from Rn to
(R/γtR)n.

For any code C and any r ∈ R, (C : r) is the submodule quotient (C : r) =
{e ∈ Rn | re ∈ C}.
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Definition. To any code C over R, we associate the tower of codes

C = (C : γ0) ⊆ (C : γ1) ⊆ · · · ⊆ (C : γν−1)

over R and its projection to R/γtR for 1 ≤ t < j <∞,

ψt(C) = ψt((C : γ0)) ⊆ ψt((C : γ1)) ⊆ · · · ⊆ ψt((C : γν−1)).

For a particular case, t = 1, the projection of the towers were introduced in

[18] and denoted as ψ1((C : γl)) = (C : γl).
The following result appears in [18, Lemma 3.4] for the particular case t = 1.

Lemma 3.1. Let C be a code over R with generator matrix G in standard form
and let A be as in (2). Then for 1 ≤ t < ν < ∞, 0 ≤ i ≤ ν − t, ψt((C : γi))
has a generator matrix 

ψt(A0)
ψt(A1)

...
ψt(Ai)

ψt(γAi+1)
...

ψt(γ
t−1At−1+i)


over R/γtR and k(ψt((C : γi))) = k0(C) + k1(C) + · · ·+ kt−1+i(C).

Proof. For completeness, we give a proof which is similar to the one given for
Lemma 3.4 in [18].

It is easy to check that ψt((C : γi)) contains the module spanned by the
rows of the given matrix. Let e ∈ ψt((C : γi)) and let g ∈ (C : γi) be such that
ψt(g) = e. As γig ∈ C and G is a generating matrix for C, there are vj ∈ Rkj
such that

γig = (v0, v0A0,1 + γv1, . . . , v0A0,ν−1 + v1γA1,ν−1 + · · ·+ γν−1vν−1,

v0A0,ν + · · ·+ γν−1vν−1Aν−1,ν).

Here, γig is divisible by γi, therefore v0 = γiw0 for some w0 ∈ Rk0 . The second
block of entries of γig becomes γiw0A0,1 + γv1, hence v1 = γi−1w1 for some
w1 ∈ Rk1 . By following the same steps, we get vj = γi−jwj for some wj ∈ Rkj
for j = 0, 1, . . . , ν − 1. Accordingly, γig =

∑i
j=0 γ

iwjAj +
∑ν−1
j=i+1 γ

jvjAj

and g ≡
∑i
j=0 wjAj +

∑ν−1
j=i+1 γ

j−ivjAj (mod γν−i) by Corollary 2.2, thus

e = ψt(g) =
∑i
j=0 ψt(wj)ψt(Aj)+

∑t−1+i
j=i+1 ψt(vj)ψt(γ

j−iAj)+γtR, i.e., ψt((C :

γi)) is generated by the required matrix. Since k(ψt(Al)) = kl(C) for each l ∈
{0, . . . , i} and k(ψt(γ

i+lAl+i)) = ki+l(C) for each l ∈ {1, . . . , t− 1}, k(ψt((C :
γi))) = k0(C) + k1(C) + · · ·+ kt−1+i(C). �

The following result also appears in [18, Theorem 3.10] for the particular
case t = 1.
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Lemma 3.2. Let C be a code over R with generator matrix G in standard form
as in (1). Then for 1 ≤ t < ν < ∞, 0 ≤ i ≤ ν − t, ψt((C⊥ : γi)) = (ψt((C :
γν−t−i)))⊥ over R/γtR.

Proof. We will first prove that ψt((C
⊥ : γi)) ⊥ ψt((C : γν−t−i)). Let b ∈

(C⊥ : γi) and let e ∈ (C : γν−t−i). In this case, γib ∈ C⊥ and γν−t−ie ∈
C, thus γν−tbetr = 0, i.e., ψt(be

tr) = 0. Then ψt((C
⊥ : γi)) ⊆ (ψt((C :

γν−t−i)))⊥. Note that k0(C⊥) = n − k(C) and ki(C
⊥) = kν−i(C) for all

0 < i ≤ ν − 1, [18, Theorem 3.10]. ψt((C : γν−t−i)) is a code of type {k0 +
k1 + · · ·+ kν−t−i, kν−t−i+1, . . . , kν−1−i} by Lemma 3.1 thus implying (ψt((C :

γν−t−i)))⊥ is a code of type {n−(
∑ν−1−i
j=0 kj), kν−1−i, . . . , kν−t−i+1} by Lemma

2.7. Applying the similar procedure, we obtain that ψt((C
⊥ : γi)) is a code

of type {n − (
∑ν−1−i
j=0 kj), kν−i−1, . . . , kν−t+1−i}. Because ψt((C

⊥ : γi)) and

(ψt((C : γν−t−i)))⊥ are codes of same type and ψt((C
⊥ : γi)) ⊆ (ψt((C :

γν−t−i)))⊥, ψt((C
⊥ : γi)) = (ψt((C : γν−t−i)))⊥ over R/γtR by [18, Corollary

3.7]. �

Example 3.3. Let R = Z33 . By [8, p. 227], T (R) = {0, 1,−1}. Let C be a

code over R with generator matrix G =
(

1 0 2 0
0 3 6 15
0 0 9 18

)
. Then A0 =

(
1 0 2 0

)
,

A1 =
(
0 1 2 5

)
, A2 =

(
0 0 1 2

)
. The code (C : 3) is generated by

G1 =

(
1 0 2 0
0 1 2 5
0 0 3 6
0 0 0 9

)
. For t = 2, ψ2(15) = ψ2(6) = −3, ψ2(18) = ψ2(9) = ψ2(0) = 0,

ψ2(5) = −4, ψ2(1) = 1, ψ2(2) = 2. The codes ψ2((C : 30)) and ψ2((C :

31)) are generated over R/32R respectively by
(

1 0 2 0
0 3 −3 −3

)
=
(
ψ2(A0)
ψ2(3A1)

)
and(

1 0 2 0
0 1 2 −4
0 0 3 −3

)
=

(
ψ2(A0)
ψ2(A1)
ψ2(3A2)

)
. Moreover, k(ψ2((C : 30))) = 2 = k0 + k1 and

k(ψ2((C : 31))) = 3 = k0 + k1 + k2.

In particular, the code C⊥ is generated by
(

25 20 1 1
21 3 3 9
0 9 0 9

)
, and ψ2(C⊥) is gen-

erated by
(−2 2 1 1

3 3 3 0

)
by the fact that ψ2(25) = −2, ψ2(20) = 2, ψ2(21) = 3.

Clearly ψ2(C⊥) ⊥ ψ2(C : 3), as indicated in Lemma 3.2.

Let C be a code with generator matrix G as in (1). The following matrix H

(3)


B0,ν B0,ν−1 . . . B0,1 In−k(C)

γB1,ν γB1,ν−1 . . . γIkν−1(C) 0
...

... . . .
...

...
γν−1Bν−1,ν γν−1Ik1(C) . . . 0 0

 =


B0

γB1

...
γν−1Bν−1


is a generator matrix for C⊥ and a parity check matrix for C, where Bi,j =

−
∑j−1
k=i+1Bi,kA

tr
ν−j,ν−k−Atrν−j,ν−i for 0 ≤ i < j ≤ ν, (see [18, Theorem 3.10]).
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We associate the following matrix B to H, where B is defined as

(4)


B0

B1

...
Bν−1

 .

Corollary 3.4. Let C be a code over R with generator matrix G as in (1),
parity check matrix H as in (3) and let A, B be associated to G,H as in (2)
and (4). Then, for 1 ≤ t < ν <∞, ψt(C) has a generator matrix and a parity
check matrix


ψt(A0)
ψt(γA1)

...
ψt(γ

t−1At−1)

 ,



ψt(B0)
ψt(B1)

...
ψt(Bν−t)

ψt(γBν−t+1)
...

ψt(γ
t−1Bν−1)


over R/γtR, respectively.

We close this section with the following result.

Corollary 3.5. Let C be a code over Rν with generator matrix G as in (1).
The following assertions are equivalent:

(1) C is a free code;
(2) ψt(C) = ψt((C : γ0)) = ψt((C : γ1)) = · · · = ψt((C : γν−t)) over

R/γtR for all 1 ≤ t < ν <∞;
(3) ψt(C) = ψt((C : γ0)) = ψt((C : γ1)) = · · · = ψt((C : γν−t)) over

R/γtR for some 1 ≤ t < ν <∞.

Proof. (1) ⇒ (2) follows by Lemma 3.1 and Corollary 2.8, (2) ⇒ (3) is clear.
For (3)⇒ (1), pick an arbitrary t ∈ {1, . . . , ν−1} and assume ψt(C) = ψt((C :
γ0)) = ψt((C : γ1)) = · · · = ψt((C : γν−t)) over R/γtR. Then, by Lemma 3.1,
kt = · · · = kν−1 = 0. Now, we will show that ki = 0 for all i ∈ {1, . . . , t − 1}.
By Lemma 3.1, ψt(C) and ψt((C : γ1)) have generator matrices


ψt(A0)
ψt(γA1)

...
ψt(γ

t−1At−1)

 ,



ψt(A0)
ψt(A1)
ψt(γA2)

...
ψt(γ

t−2At−1)
ψt(γ

t−1At)


over R/γtR, respectively. Then now, ψt(C) and ψt((C : γ1)) are codes of types
{k0, k1, . . . , kt−1} and {k0 + k1, k2, . . . , kt−1, kt}, respectively. However, since
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by our assumption ψt(C) = ψt((C : γ1)), k0 = k0 + k1, k1 = k2, . . ., kt−1 = kt,
so that ki = 0 for all i ∈ {1, . . . , t}. k(C) must then be equal to k0(C) implying
C is a free code by Corollary 2.8. �

Example 3.6. Let R be as in Example 3.3. Let C be a code over R with gen-
erator matrix G =

(
1 0 2

)
. Then the codes (C : 3), (C : 32), C⊥, (C⊥ : 3)

and (C⊥ : 32) are generated respectively by
(

1 0 2
0 9 0
0 0 9

)
,
(

1 0 2
0 3 0
0 0 3

)
, ( 1 0 13

0 1 0 ),
(

1 0 13
0 1 0
0 0 9

)
,(

1 0 13
0 1 0
0 0 3

)
. The codes ψ2((C)) = ψ2((C : 31)) and ψ2((C⊥)) = ψ2((C⊥ : 31)) are

generated over R/32R respectively by
(
1 0 2

)
, ( 1 0 4

0 1 0 ). Moreover, ψ2(C⊥ :

30) = (ψ2((C : 31)))⊥, ψ2((C⊥ : 3)) = (ψ2((C : 30)))⊥.

For the other characterizations of free codes over a finite chain ring, we refer
the reader to [17, Corollary 3.12] and [18, Proposition 3.13].

4. LCD codes over R

In this section, we will examine LCD codes over a finite chain ring R. Using
the results mentioned in the preceding section, we proceed with providing some
necessary and sufficient conditions for an LCD code C over a finite chain ring.
We will start with showing LCD codes over a finite chain ring are free codes.
The following proposition will be used in the sequel.

Proposition 4.1. LCD codes over a finite chain ring are free codes.

Proof. First, let us point out that (A⊥)⊥ = A and (A ∩ B)⊥ = A⊥ + B⊥ for
any linear codes A,B over R, see [9, Theorem 3.1]. Assume that C is an LCD
code with length n over a chain ring R. It follows from our assumptions that
C+C⊥ = (C ∩C⊥)⊥ = 0⊥ = Rn. We obtain C⊕C⊥ = Rn using the property
C∩C⊥ = 0. Therefore, C is a direct summand of the free code Rn which yields
the conclusion that C is a free code. �

In terms of the generator matrix, we now give a sufficient and necessary
condition for a linear code C over R to be LCD code by Proposition 4.1 and
[12, Theorem 3.5, Corollary 3.6].

Corollary 4.2. Let C be a code over R with generator matrix G in standard
form as in (1). Then C is an LCD code if and only if the k × k matrix GGtr

is invertible, where k is the number of rows of G.

Corollary 4.3. A linear code C over R with generator matrix G in standard
form as in (1) is free if the k × k matrix GGtr is invertible, where k is the
number of rows of G.

The following example was given in [12] to show that the k×k matrix GGtr is
not invertible for some linear LCD code C with generator matrix G in standard
form. However, the given code C is not an LCD code, hence the corresponding
example is not correct.
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Example 4.4. Let C be a code over Z4 with generator matrix in standard
form as follows

G =


1 0 0 0 1 0
0 1 0 0 0 1
0 0 2 0 2 0
0 0 0 2 2 2

 .

This code is not LCD code, since (2, 0, 0, 0, 2, 0) ∈ C ∩ C⊥ 6= 0.

Using the results provided in the preceding section, we now give some nec-
essary and sufficient conditions for an LCD code C over a finite chain ring,
through Proposition 4.1.

Theorem 4.5. Let C be a code over R for 1 ≤ ν <∞. The following assertions
are equivalent:

(1) C is an LCD code over R;
(2) ψt(C) is an LCD code and ψt(C) = ψt((C : γν−t)) over R/γtR for all

1 ≤ t < ν;
(3) ψt(C) is an LCD code and ψt(C) = ψt((C : γν−t)) over R/γtR for

some 1 ≤ t < ν.

Proof. (1) ⇒ (2) C is a free code by Proposition 4.1. Therefore, ψt(C) =
ψt((C : γν−t)) over R/γtR for all 1 ≤ t < ν <∞, through Corollary 3.5. The
remaining part is an immediate consequence of [12, Theorem 3.9]. (2)⇒ (3) is
obvious.

(3) ⇒ (1) Assume that ψt(C) is an LCD code and ψt(C) = ψt((C : γν−t))
over R/γtR for fix t, t ∈ {1, . . . , ν − 1}. Suppose, contrarily, that C is not an
LCD code over R. Take c ∈ C ∩ C⊥ with c 6= 0. There exists u ∈ Rn such
that c = γiu, γ - u and i ∈ {0, 1, . . . , ν − 1}. Then u ∈ (C : γi) ∩ (C⊥ : γi).
Consider two cases for i, either 0 ≤ i ≤ ν − t or ν − t < i ≤ ν − 1.

In the former case, ψt(u) ∈ ψt((C : γi))∩ψt((C⊥ : γi)). Notice that ψt(u) 6=
0 in R/γtR, because otherwise, by Lemma 2.4, γν−tu = 0 in R implying
γt | u which contradicts with γ - u. Now, since by our assumption ψt(C) =
ψt((C : γν−t)), ψt(C) = ψt((C : γi)), hence ψt(u) ∈ ψt(C). Notice that
the assumption ψt(C) = ψt((C : γν−t)) for an arbitrary t, t ∈ {1, . . . , ν − 1}
is necessary and sufficient for C to be free by Corollary 3.5. Then now, by
[18, Proposition 3.13], C⊥ is a free code, so that ψt(C

⊥) = ψt((C
⊥ : γi)) for all

0 ≤ i ≤ ν− t by Corollary 3.5, hence ψt(u) ∈ ψt(C⊥). Since ψt(C
⊥) = (ψt((C :

γν−t)))⊥ by Lemma 3.2, we have ψt(C
⊥) = (ψt(C))⊥ by our assumption,

whence ψt(u) ∈ (ψt(C))⊥. However, ψt(C) is an LCD code which contradicts
with 0 6= ψt(u) ∈ ψt(C) ∩ (ψt(C))⊥. So, this case is not possible.

In the latter case, i = (ν−t)+k for some 1 ≤ k ≤ t−1. Then now c = γiu =
γν−t(γku), so that γku ∈ (C : γν−t) ∩ (C⊥ : γν−t), hence ψt(γ

ku) ∈ ψt((C :
γν−t)) ∩ ψt((C⊥ : γν−t)). Before we proceed, let us note that ψt(γ

ku) 6= 0 in
R/γtR, which otherwise yields, by Lemma 2.4, γν−t(γku) = γiu = 0 in R. This
contradicts with c 6= 0. In the same vein as the former case, one can obtain
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ψt(γ
ku) ∈ ψt(C) ∩ (ψt(C))⊥. However, ψt(C) is an LCD code which implies

ψt(γ
ku) = 0, a contradiction. So, this case is also not possible.

Thus, either case leads to a contradiction, yielding the conclusion. �

In the following example, we show that the condition ψt(C) = ψt((C : γν−t))
over R/γtR for some 1 ≤ t < ν in Theorem 4.5 is necessary.

Example 4.6. Let C be a linear code over the finite chain ring R = Z4 with
generator matrix in standard form as follows

G =

(
1 2 2
0 0 2

)
.

Obviously, C is not free, therefore it is not an LCD code by Proposition 4.1.
ψ2

1(C) and ψ2
1(C : γ), by Corollary 4.2, are LCD codes over R1 with generator

matrix
(
1 0 0

)
and ( 1 0 0

0 0 1 ). Clearly, ψ2
1(C) 6= ψ2

1(C : γ).

Example 4.7. Let R be as in Example 3.3. Let C be a code over R/9R with
generator matrix G =

(
1 0 8

)
. GGtr = (2) is invertible, and hence C is

an LCD code. Note that ψ2(1) = ψ2(1.30 + 0.31 + 0.32) = ψ2(1.30 + 0.31 +
(−1).32) = ψ2(1.30 + 0.31 + 1.32) = 1. Similarly, ψ2(18) = ψ2(9) = ψ2(0) =
0 and ψ2(26) = ψ2(17) = ψ2(8) = 8. There are 27 possible LCD code C ′

over R such that ψ2(C ′) = C. For example, the codes which are generated
by
(
1 9 8

)
,
(
1 18 17

)
,
(
1 9 26

)
are LCD codes over R, and whose

projections on R/9R are C.

Now, we will provide another necessary and sufficient condition for a linear
code C to be an LCD code.

Theorem 4.8. Let C be a code over R for 1 ≤ ν <∞. C is an LCD code if and
only if γν−1v does not belong to C∩C⊥ for any nonzero v = (v1, . . . , vn) ∈ Fnq .

Proof. The necessity is obvious. For sufficiency, let us assume that γν−1v
does not belong to C ∩ C⊥ for any nonzero v = (v1, . . . , vn) ∈ Fnq . Also, let

u ∈ C ∩ C⊥ with u 6= 0. There exists v ∈ Rn such that u = γiv, γ - v
and i ∈ {0, 1, . . . , ν − 1}. We have v = (v1, . . . , vn) = (v1,0 + v1,1γ + · · · +
v1,ν−1γ

ν−1, . . . , vn,0 + vn,1γ + · · ·+ vn,ν−1γ
ν−1) where vs,l ∈ Fq for 1 ≤ s ≤ n

and 0 ≤ l ≤ ν − 1. Since γ - v, at least one of v1,0, . . . , vn,0 should be nonzero.
Now, consider the element γν−i−1u. Note that γν−i−1u is not zero, which oth-
erwise yields 0 = γν−i−1u = γν−1v. This implies γ | v, which is a contradiction
since γ - v. γν−i−1u ∈ C ∩ C⊥ as u ∈ C ∩ C⊥. However, γν−i−1u = γν−1v =
γν−1(v1,0 + v1,1γ + · · · + v1,ν−1γ

ν−1, . . . , vn,0 + vn,1γ + · · · + vn,ν−1γ
ν−1) =

γν−1(v1,0, . . . , vn,0), where (v1,0, . . . , vn,0) ∈ Fnq \ {0}, contradicting our hy-
pothesis. Therefore, we cannot have such a nonzero element as u above. �

In [12, Theorem 3.10], Liu and Liu showed that a linear code C of length n
over Rj for 1 ≤ j <∞ is an LCD code if γj−1v does not belong to C ∩C⊥ for

any nonzero v = (v1, . . . , vn) ∈ Fnq and ψjk(C) is an LCD code over Rk for all
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1 ≤ k < j. In the previous theorem, we showed that the former condition itself
in [12, Theorem 3.10] is sufficient and necessary for a linear code C to be LCD
code over a chain ring. Therefore, the latter condition in [12, Theorem 3.10] is
unnecessary.

Now, we will give a subclass of LCD codes over chain ring R. Every free code
C overR is equivalent (up to a permutation of the coordinates of the codewords)
to a code having a generator matrix in the standard form G = (Ik(C)|M) for

some M (Corollary 2.8). A square matrix B is called nilpotent if Bk = 0
for some positive integer k. Note that I + B is an invertible matrix if B is a
nillpotent matrix.

Proposition 4.9. Let G = (Ik(C)|M) be a generator matrix in standard form
for a free code C over chain ring R. If MM tr is nilpotent, then C is an LCD
code.

Proof. As we mentioned in the preceding paragraph, I + MM tr is invertible.
Then, C is an LCD code by Corollary 4.2. �

Corollary 4.10. Let G = (Ik(C)|γiM) be a generator matrix in standard form
for a code C over chain ring R. Then, C is an LCD code for each i ≥ 1.

The preceding result also appears in [12] for i ≥
⌈
ν
2

⌉
, where de denotes the

ceiling function.

Theorem 4.11. Let C be a linear code of length n over R. There exists a
corresponding LCD code C ′ of length 2n− k(C) over R with d(C ′) > d(C).

Proof. By [17, Corollary 4.7], there is a free code D of length n such that
k(C) = k(D) and d(C) = d(D). Let G = (Ik(C)|M) be an associated matrix

in standard form for D. Then, since γ2MM tr is a nilpotent matrix, G′ =
(Ik(C)|M |(γ − 1)M) is the generator matrix of an LCD code C ′ of length 2n−
k(C) over R with d(C ′) > d(C). �

The asymptotic goodness of LCD codes now follows trivially from that of
general linear codes.
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