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DEHN SURGERIES ON MIDDLE/HYPER DOUBLY SEIFERT

TWISTED TORUS KNOTS

Sungmo Kang

Abstract. In this paper, we classify all twisted torus knots which are

middle/hyper doubly Seifert. By the definition of middle/hyper doubly
Seifert knots, these knots admit Dehn surgery yielding either Seifert-

fibered spaces or graph manifolds at a surface slope. We show that mid-
dle/hyper doubly Seifert twisted torus knots admit the latter, that is,

non-Seifert-fibered graph manifolds whose decomposing pieces consist of

two Seifert-fibered spaces over the disk with two exceptional fibers.

1. Introduction

Let H be a genus two handlebody and k be a simple closed curve in the
boundary of H. A 2-handle addition to H along k, denoted by H[k], is defined
to be a manifold obtained by adding a 2-handle to H along k. If H[k] is a solid
torus, then k is said to be primitive in H. If H[k] is a Seifert-fibered space and
not a solid torus, then k is said to be Seifert in H.

In [4], Dean introduced twisted torus knots K in S3 which lie in a genus
two Heegaard surface standardly embedded in S3. The twisted torus knots are
parameterized by p, q, r,m, and n, and are denoted by K = K(p, q, r,m, n),
where p, q and m,n come from a (p, q)-torus knot and an (m,n)-torus knot
respectively with 1 ≤ q < p, and r means the number of parallel arcs of a
(p, q)-torus knot with 0 < r ≤ p + q. The definition of twisted torus knots is
given in Section 2.1.

Dean gave some criteria on the parameters p, q, r,m, and n of a twisted
torus knot which make it primitive or Seifert. Using these criteria on twisted
torus knots, he constructed primitive/Seifert knots which admit Dehn surgery
yielding Seifert-fibered spaces over the sphere with three exceptional fibers. In
other words, since a twisted torus knot lies in a genus two Heegaard surface
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of S3, it is primitive in one genus two handlebody and Seifert in the other
handlebody.

Especially Dean made three criteria on the parameters of a twisted torus
knot such that it becomes Seifert in a genus two handlebody and a 2-handle
addition is a Seifert-fibered space over the disk with two exceptional fibers. The
three criteria give rise to the three types of Seifert curves; hyper Seifert-fibered,
middle Seifert-fibered, end Seifert-fibered. As in the construction of primi-
tive/Seifert knots, we can build Seifert/Seifert or doubly Seifert knots. Since
there are three types of Seifert curves, we have the following 9 types of dou-
bly Seifert twisted torus knots: hyper/hyper, hyper/middle, hyper/end, mid-
dle/hyper, middle/middle, middle/end, end/hyper, end/middle, end/end. For
example, a twisted torus knot is called a hyper/middle doubly Seifert twisted
torus knot if it is hyper Seifert in one handlebody and middle Seifert in the other
handlebody. Note that by the definition of a twisted torus knot K(p, q, r,m, n)
and the condition 1 ≤ q < p, the A/B and B/A doubly Seifert twisted torus
knots are distinct, where A, B are hyper, middle, or end and A6=B.

In general, if a knot in a genus two Heegaard surface of S3 is doubly Seifert,
then by Lemma 2.1 in [4], Dehn surgery at a surface slope is either a Seifert-
fibered space or a graph manifold. Here, a surface slope is defined to be the
isotopy class of a component of the intersection between the boundary of a
regular neighborhood of the knot and the Heegaard surface.

Throughout this paper, S(a1, . . . , an) denotes a Seifert-fibered space over a
surface S with n exceptional fibers of indexes a1, . . . , an.

In [6], [5], and [7], the author classified hyper/hyper, hyper/middle, and
middle/middle doubly Seifert twisted torus knots respectively. By [6] there are
6 types of hyper/hyper doubly Seifert twisted torus knots. All of these knots
admit S2(a, b, c, d) Dehn surgeries at a surface slope and turn out to be satellite
knots. This result supports the positive answer of the conjecture that if a knot
in S3 admits S2(a, b, c, d) Dehn surgery, then the knot is not hyperbolic. By
[5] and [7], there are 4 types of hyper/middle and 6 types of middle/middle
doubly Seifert twisted torus knots respectively, and all of these knots admit
Dehn surgeries yielding non-Seifert-fibered graph manifolds at a surface slope
whose decomposing pieces are D2(a, b) and D2(c, d).

In this paper, we classify all middle/hyper twisted torus knots and show
that, just as hyper/middle and middle/middle doubly Seifert twisted torus
knots Dehn surgeries at a surface slope on these knots are graph manifolds
whose decomposing pieces are D2(a, b) and D2(c, d). The result of this paper
is as follows:

Theorem 1.1. There are 6 types of middle/hyper doubly Seifert twisted torus
knots in S3 and all of these knots admit Dehn surgery yielding non-Seifert-
fibered graph manifolds at a surface slope consisting of D2(a, b) and D2(c, d).

Proof. This follows from Theorem 3.1 and Lemmas 4.1∼4.6. �
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2. Twisted torus knots and R-R diagrams

Regarding twisted torus knots, their definition and properties were intro-
duced by Dean in [4]. Especially some properties of twisted torus knots related
to Dehn surgeries and primitive or Seifert curves were referred and cited in [5].
Regarding R-R diagrams, their definition and properties were given by Berge
in [1] and R-R diagrams of twisted torus knots were given in [5]. Therefore
similarly as in [7] we provide brief explanations about definitions, lemmas and
propositions without details or proofs.

2.1. Twisted torus knots

Let V1 and V2 be two standardly embedded disjoint unlinked solid tori in
S3. Let T (p, q) be a (p, q)-torus knot which lies in the boundary of V1 and
rT (m,n) be the r parallel copies of T (m,n) which lie in the boundary of V2.
Here we may assume that 0 < q < p and m > 0. Let D1 be a disk in ∂V1 so
that T (p, q) intersects D1 in r disjoint parallel arcs, where 0 < r ≤ p+ q, and
D2 a disk in ∂V2 so that rT (m,n) intersect D2 in r disjoint parallel arcs, one
for each component of rT (m,n). By excising the disks D1 and D2 from their
respective tori and gluing the punctured tori together along their boundaries
so that the orientations of T (p, q) and rT (m,n) align correctly, we build a knot
lying in the boundary of a genus two handlebody H which is obtained from
V1 and V2 by gluing the disks D1 and D2. This knot is called a twisted torus
knot, which is denoted by K(p, q, r,m, n). Figure 1 shows a twisted torus knot
K(7, 3, 3, 2, 1).

Figure 1. A twisted torus knot K(7, 3, 3, 2, 1).

Let H ′ = S3 −H and Σ = ∂H = ∂H ′. Then (H,H ′; Σ) forms a genus two
Heegaard splitting of S3 and all twisted torus knots lie in the genus two Hee-
gaard surface Σ bounding the two handlebodies H and H ′ of S3 as constructed
above.

Proposition 2.1. The surface slope γ of a twisted torus knot K(p, q, r,m, n)
with respect to the Heegaard surface Σ is pq + r2mn.

Proof. This is Proposition 3.1 in [4]. �
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Figure 2. The generators of π1(H) and π1(H ′).

Let Ga,b = 〈x, y | xayb 〉 be a group presentation with two generators x, y
and one relator xayb. An element w in the free group 〈x, y 〉 is said to be
(a, b) Seifert-fibered if 〈x, y | w 〉 is isomorphic to Ga,b. The following lemma
indicates the geometric version of (a, b) Seifert-fiberedness.

Lemma 2.2. Let k be a simple closed curve in the boundary of a genus two
handlebody H. k is a Seifert curve in H with H[k] = D2(a, b) if and only if k
in π1(H) is (a, b) Seifert-fibered.

Proof. This is Lemma 2.2 in [4]. �

Let {x, y} and {x′, y′} be the generating sets dual to the sets of the cutting
disks1 {DX , DY } and {DX′ , DY ′} of H and H ′ respectively as shown in Fig-
ure 2. Let wp,q,r,m,n and w′p,q,r,m,n be the conjugacy classes of a twisted torus
knot K(p, q, r,m, n) in π1(H) = 〈x, y〉 and π1(H ′) = 〈x′, y′〉 respectively. Note
that w′p,q,r,m,n is equal to wq,p,r,n,m with x replaced by x′ and y replaced by y′,
and by the construction of a twisted torus knot, wp,q,r,m,n (w′p,q,r,m,n, resp.)
does not depend on the parameter n (m, resp.). Therefore we often omit n (m,
resp.).

There are more properties in wp,q,r,m,n. For g and h in a group G, we say g
is equivalent to h, denoted by g ≡ h, if there is an automorphism of G carrying
g to h.

Lemma 2.3. The words wp,q,r,m have the following properties.

(1) wp,q,r,m ≡ wp,q′,r,m if q ≡ ±q′ mod p.
(2) wp,q,r,m ≡ wp,q,r′,m if r ≡ ±r′ mod p.

Proof. This is Lemma 3.3 in [4]. �

The following lemma provides which values of the parameters p, q, r,m, and
n produce a primitive curve of K(p, q, r,m, n) with respect to H.

Lemma 2.4. wp,q,r,m is primitive in π1(H) if and only if

1If cutting a genus two handlebody H along two disks D1 and D2 yields a 3-ball, then
{D1, D2} is said to be a set of cutting disks of H. This definition is generalized to a genus

n handlebody for n > 2.
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(1) p = 1; or
(2) m = 1 and r = ±1 or ±q mod p.

Proof. This is Theorem 3.4 in [4]. �

For integers p and q, q̂−1 is defined to be the smallest positive integer con-
gruent to ±q−1 mod p. For a real number x, x̃ denotes the smallest integer
greater than or equal to x. The following proposition gives three criteria to
determine which wp,q,r,m,n are Seifert-fibered in π1(H).

Proposition 2.5. Let w = wp,q,r,m be a conjugacy class in π1(H) of a twisted
torus knot K(p, q, r,m, n). Let q′ be an integer such that q ≡ ±q′ mod p with
0 < q′ < p/2.

(1) If m > 1 and r ≡ ±1 or ±q′ mod p, then w is (p,m) Seifert-fibered.
(2) If m = 1 and r ≡ ±βq′ mod p, where 1 < β ≤ p/q′ with p − βq′ > 1,

then w is (β, p− βq′) Seifert-fibered.

(3) If m = 1 and r ≡ ±r̄ mod p, where 1 < r̄ ≤ ˜
p/q̂′

−1
with p− r̄q̂′

−1
> 1,

then w is (r̄, p− r̄q̂′
−1

) Seifert-fibered.

Proof. The parts (1), (2), and (3) are Propositions 3.6, 3.8, and 3.10 respec-
tively in [4]. �

Dean in [4] conjectured that these three types describe all wp,q,r,m that are
Seifert-fibered. The first type (1), the second type (2), and the third type (3) of
Seifert-fibered wp,q,r,m (or K(p, q, r,m, n)) in Proposition 2.5 are called hyper
Seifert-fibered, middle Seifert-fibered, and end Seifert-fibered in H respectively.
With respect to the other handlebody H ′ we can apply Proposition 2.5 by
switching p and q, and m and n to say that w′p,q,r,n (wq,p,r,n or K(p, q, r,m, n))
is hyper Seifert-fibered, middle Seifert-fibered, or end Seifert-fibered in H ′.

Using the three types of Seifert curves of twisted torus knots, we can build
doubly Seifert twisted torus knots. We have the following 9 types of dou-
bly Seifert twisted torus knots: hyper/hyper, hyper/middle, hyper/end, mid-
dle/hyper, middle/middle, middle/end, end/hyper, end/middle, end/end. Note
that by the definition of a twisted torus knot K(p, q, r,m, n) and the condition
1 ≤ q < p, the A/B and B/A doubly Seifert twisted torus knots are distinct,
where A, B are hyper, middle, or end, and A6=B.

Hyper/hyper, hyper/middle, and middle/middle doubly Seifert twisted torus
knots were classified in [6], [5], and [7] respectively together with Dehn surgeries
on those knots at a surface slope. Thus the goal of this paper is to classify all
middle/hyper doubly Seifert twisted torus knots K(p, q, r,m, n) by finding all
possible values of the parameters p, q, r,m, and n. Furthermore we find a
surface slope with which Dehn surgery is a non-Seifert-fibered graph manifold
whose decomposing pieces are D2(a, b) and D2(c, d).
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Figure 3. R-R diagram of K = K(p, q, r,m, n) with respect
to H and H ′, where as+ bt+ cu = p, as′ + bt′ + cu′ = q, and
a+ b+ c = r.

2.2. R-R diagrams

R-R diagrams were originally introduced by Osborne and Stevens in [8], and
developed by Berge. R-R diagrams are a type of planar diagram related to
Heegaard diagrams of simple closed curves in the boundary of a genus two
handlebody and in particular useful for describing embeddings of simple closed
curves in the boundary of a handlebody so that the embedded curves represent
certain conjugacy classes in the fundamental group of the handlebody. For the
definition and properties of R-R diagrams, see [1] or [5]. An R-R diagram of
a twisted torus knot K(p, q, r,m, n) has the form shown in Figure 3, where
K = K(p, q, r,m, n). The details of how to make an R-R diagram of a twisted
torus knot K(p, q, r,m, n) are given in [5].

The following theorem was originally given in [2] and the remarks after it
were given in [5]. They are the key tool to find a regular fiber of H[K] when
H[K] = D2(a, b). Since the preprint [2] has not yet been posted, I add the
proof of the following theorem, which is given in [2].

Theorem 2.6. If k is a nonseparating simple closed curve in the boundary of
a genus two handlebody H such that H[k] is Seifert-fibered over D2 with two
exceptional fibers, then k has an R-R diagram of the form in Figure 4a with
n, s > 1, or in Figure 4b with n > 0, s > 1, a, b > 0, and gcd(a, b) = 1, up to
homeomorphism of H.

Conversely, if k has an R-R diagram of the form of Figure 4a with n, s > 1,
or Figure 4b with n > 0, s > 1, a, b > 0, and gcd(a, b) = 1, then H[k] is
Seifert-fibered over D2 with two exceptional fibers of indexes n and s, or indexes
n(a+ b) + b and s respectively.

In addition, the curves τ1 and τ2 in Figure 4a and the curve τ in Figure 4b
are regular fibers of H[k].

Proof. First assume that k is a nonseparating simple closed curve in the bound-
ary of a genus two handlebody H such that H[k] is Seifert-fibered over D2 with
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Figure 4. Two types of R-R diagrams of a Seifert curve k
with n, s > 1 in Figure 4a, and n > 0, s > 1, a, b > 1, and
gcd(a, b) = 1 in Figure 4b, and regular fibers τ, τ1, and τ2 of
H[k].

two exceptional fibers. Since H[k] is defined to be the manifold obtained by
adding a 2-handle to H along k, H[k] induces a genus two Heegaard decomposi-
tion of Seifert-fibered spaces over D2 with two exceptional fibers. Theorem 2.7,
which is a result of [3], shows that there are only three genus two Heegaard
decompositions of a Seifert-fibered space over D2 with two exceptional fibers
up to homeomorphism. Also Theorem 2.8 verifies how to describe the three
decompositions in terms of R-R diagrams, finishing the proof of the ‘if’ part.

Conversely, assume that k has an R-R diagram of the form in Figure 4a with
n, s > 1. Figure 5 illustrates the situation when n = 3 and s = 2, where DA

and DB are cutting disks of H underlying the A-handle and B-handle of the
R-R diagram of k and two parallel copies of τ2 are shown. Note that the two
parallel copies of τ2 are chosen to bound an essential separating annulus A in
H as in Figure 5.

Cutting H apart along A yields a genus two handlebody W and a solid
torus Z. Note that k lies in the boundary of the genus two handlebody W as
a primitive curve, which implies that W [k] is a solid torus. Therefore H[k] is
obtained by gluing the two solid tori W [k] and Z together along A. It follows
that H[k] is Seifert-fibered over D2 with ∂A as regular fibers and with the cores
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Figure 5. The curve k and two copies of τ2 bounding an
essential separating annulus A in H with n = 3 and s = 2.

of W [k] and Z as exceptional fibers. This implies that τ2 is a regular fiber of
H[k].

For the indexes of the two exceptional fibers of H[k] it is clear that the
annulus A wraps around the solid torus Z s times longitudinally, so the core
of Z is an exceptional fiber of index s. The other index can be obtained by
computing π1((W [k])[τ2]) because π1((W [k])[τ2]) indicates how many times
τ2 wraps around the core of the solid torus W [k]. Note that (W [k])[τ2] is
homeomorphic to (W [τ2])[k], W [τ2] is a solid torus, and k lies in the boundary
of W [τ2] and wraps around it n times longitudinally. We can also see that DA

in Figure 5 is a meridional disk of the solid torus W [τ2] and k intersects DA n
times. Thus π1((W [k])[τ2]) = π1((W [τ2])[k]) = Zn, implying that the core of
W [k] is an exceptional fiber of index n.

Since the R-R diagram of k of the form in Figure 4a is symmetric, a similar
argument can be applied to τ1 instead of τ2 to see that τ1 is a regular fiber of
H[k].

Now we assume that k has an R-R diagram of the form in Figure 4b with
n > 0, s > 1, a, b > 0, and gcd(a, b) = 1. In this case, we can also construct
an essential annulus A in H which is bounded by two copies of τ . As in the
first case, cutting H apart along A yields a genus two handlebody W and a
solid torus Z, where k also lies as a primitive curve in the boundary of W .
Therefore H[k] is Seifert-fibered over D2 with two exceptional fibers such that
τ is a regular fiber and the cores of W [k] and Z are exceptional fibers. Since
τ wraps around the core of Z s times, s is the index of the exceptional fiber
corresponding to the core of Z.

For the index of the exceptional fiber corresponding to the core of W [k], as
in the first case, it is enough to compute π1((W [τ ])[k]). Note that W [τ ] is a
solid torus such that the cutting disk DA of H underlying the A-handle of the
R-R diagram of k is a meridional disk of W [τ ]. Since we can see from Figure 4b
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that k intersects DA na + (n + 1)b times, n(a + b) + b is the second index, as
desired. �

To finish the proof of Theorem 2.6, we let S(ν/p, ω/q) denote an orientable
Seifert-fibered space over the disk D2 which has two exceptional fibers of types
ν/p and ω/q with 0 < ν < p and 0 < ω < q.

Also let Wm,n(x, y) be the unique primitive word up to conjugacy in the
free group F (x, y) which has (m,n) as its abelianization. Then, if v and w
are words in x and y, Wm,n(v, w) is the word obtained from Wm,n(x, y) by
substituting v for x and w for y in Wm,n(x, y).

Then the following theorem, which is Theorem 5.4 in [3], completely de-
scribes the genus two Heegaard diagrams of S(ν/p, ω/q). For the notations in
Theorem 2.7, see Sections 2, 4, and 5 in [3].

Theorem 2.7. The manifold S(ν/p, ω/q) admits three genus two Heegaard
decompositions HD0, HDS, and HDT , represented by the following Heegaard
diagrams:

HD0 ↔ (spt−q;λ, µ),

HDS ↔ (Wp,ν(u−1, tq);−, µ),

HDT ↔ (Wq,ω(v−1, sp);λ,−).

Here νλ ≡ 1 mod p and ωµ ≡ 1 mod q. Any Heegaard decomposition of genus
two of S(ν/p, ω/q) is homeomorphic to one of these. Moreover,

(1) HD0 is homeomorphic to HDT (or HDS) if and only if ω ≡ ±1 mod q
(or ν ≡ ±1 mod p, respectively).

(2) If ω ≡ ±1 mod q and ν ≡ ±1 mod p, then HD0, HDS, and HDT

are all homeomorphic.
(3) HDS and HDT are homeomorphic if and only if either case (2) occurs

or ν/p ≡ ±ω/q mod 1 (that is, p = q and ν ≡ ω mod p).

Theorem 2.8. The R-R diagrams of k in Figures 6, 7, and 8 correspond to
the Heegaard diagrams HD0, HDS, and HDT of Theorem 2.7 respectively.

Proof. First, consider the curve k in the R-R diagram of Figure 6. Then it
follows immediately that k represents spt−q in π1(H). As demonstrated in the
second part of the proof of Theorem 2.6, we see that H[k] is Seifert-fibered over
D2 with two exceptional fibers of indexes p and q such that the cores of the
A-handle and B-handle of H correspond to the exceptional fibers of H[k], and
the curves τ1 and τ2 in Figure 6 are regular fibers of H[k].

To compute the type of the exceptional fibers, we denote the cores of the
A- and B-handles by CA and CB respectively, and regular neighborhoods in
H of CA and CB by N(CA) and N(CB) respectively. We let MA and MB be
meridional disks of N(CA) and N(CB). Now we consider curves γs and γt as
shown in Figure 6. Then we can regard the curves τ1 and γs (τ2 and γt, resp.)
as lying on ∂N(CA) (∂N(CB), resp.). Furthermore, since γs and γt intersect



10 S. KANG

Figure 6. Genus two Heegaard decompositionHD0 of S(ν/p,
ω/q): Suppose ν, ω, p, and q are positive integers such that
0 < ν < p, 0 < ω < q, gcd(ν, p) = gcd(ω, q) = 1, and H is
a genus two handlebody. Then the manifold H[k], obtained
by adding a 2-handle to ∂H along a simple closed curve k in
∂H that has an R-R diagram with the form of this figure, is a
Seifert-fibered space over D2 with exceptional fibers of types
ν/p and ω/q.

τ1 and τ2 once respectively, γs and γt can be regarded as the boundary circles
of the section of the fiber bundle.

Observe from Figure 6 that τ1 and γs intersect transversely ∂MA p and
ν times respectively. Therefore ∂MA = (τν1 γ

p
s )±1 in π1(∂N(CA)). Similarly,

∂MA = (τω2 γ
q
t )±1 in π1(∂N(CB)). This implies that CA and CB are the ex-

ceptional fibers of types ν/p and ω/q in the Seifert-fibration of H[k].
Thus we can conclude that the R-R diagram in Figure 6 corresponds to the

Heegaard diagram HD0.
Second, consider the curve k in the R-R diagram of Figure 7. We see that k

represents Wp,ν(u−1, tq) in π1(H). As discussed in the second part of the proof
of Theorem 2.6, two parallel copies of τ bound an annulus A which separates
H into a genus two handlebody W and a solid torus Z. Also H[k] can be
obtained by gluing the two solid tori W [k] and Z along A, implying that H[k]
is Seifert-fibered over D2 with two exceptional fibers of indexes n(a + b) + a
and q such that the cores of W [k] and Z correspond to the exceptional fibers of
H[k], and the curve τ in Figure 7 is a regular fiber of H[k]. Taking a curve γt
as shown in Figure 7, we can apply the argument of the case of HD0 to show
that the exceptional fiber corresponding to the core of Z has the type ω/q.

For the type of the exceptional fiber corresponding to the core of W [k], we
need to consider the curve k and the regular fiber τ in the boundary of the
genus two handlebody W . The corresponding R-R diagram of k and τ in W
appears as in Figure 9. Let M be a meridional disk of the solid torus W [k].
Since the exceptional fiber corresponding to the core of W [k] has the index
p = n(a + b) + a, in order to compute the type of the exceptional fiber, it
suffices to compute the intersection number of M with γu, where γu is a curve
intersecting τ once as shown in Figure 9. This can be obtained by computing
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Figure 7. Genus two Heegaard decomposition HDS of
S(ν/p, ω/q): Suppose ν, ω, p, and q are positive integers such
that 1 < ν < p, 0 < ω < q, and gcd(ν, p) = gcd(ω, q) = 1. In
addition, suppose a, b, and n are positive integers such that
a + b = ν, nν + a = p. Then the manifold H[k], obtained
by adding a 2-handle to ∂H along a simple closed curve k in
∂H that has an R-R diagram with the form of this figure, is a
Seifert-fibered space over D2 with exceptional fibers of types
ν/p and ω/q.

Figure 8. Genus two Heegaard decomposition HDT of
S(ν/p, ω/q): Suppose ν, ω, p, and q are positive integers such
that 0 < ν < p, 1 < ω < q, and gcd(ν, p) = gcd(ω, q) = 1. In
addition, suppose a, b, and n are positive integers such that
a + b = ω, nω + a = q. Then the manifold H[k], obtained
by adding a 2-handle to ∂H along a simple closed curve k in
∂H that has an R-R diagram with the form of this figure, is a
Seifert-fibered space over D2 with exceptional fibers of types
ν/p and ω/q.

π1((W [γu])[k]). It follows from Figure 9 that W [γu] is a solid torus and k
intersects a meridional disk of W [γu] a+ b times. Since ν = a+ b, the type of
the exceptional fiber corresponding to the core of W [k] is ν/p.
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Figure 9. R-R diagram of k, τ , and γu in W .

We can conclude that the R-R diagram in Figure 7 corresponds to the Hee-
gaard diagram HDS .

Lastly, we consider the curve k in the R-R diagram of Figure 8. However the
R-R diagram of Figure 8 is similar to that of Figure 7 so that we can apply the
similar argument as that of Figure 7 to show that the R-R diagram in Figure 8
corresponds to the Heegaard diagram HDT . �

Remark 2.9. (1) Algebraically in π1(H) = 〈x, y 〉 the Seifert curve k in Fig-
ure 4a represents xnys, while k in Figure 4b is the product of xnys and xn+1ys

with |xnys| = a and |xn+1ys| = b. Here |xnys| denotes the total number of
appearances of xnys in the word of k in π1(H), etc.

(2) Algebraically the regular fibers τ1 and τ2 in Figure 4a of H[k] represent
xn and ys respectively, while the regular fiber τ in Figure 4b represents ys

in π1(H) with n, s > 1. In other words, the regular fibers correspond to the
generator in the word of k which has only one exponent.

(3) If a curve disjoint from k in Figure 4a represents xn (ys, resp.), then this
curve is isotopic to the curve τ1 (τ2, resp.) and thus can be a regular fiber of
H[k]. Similarly if a curve disjoint from k in Figure 4b represents ys, then this
curve is isotopic to the curve τ and thus can be a regular fiber of H[k].

3. Finding the parameters p, q, r,m, and n

In this section we find all possible values of the parameters p, q, r,m, and n
for which K(p, q, r,m, n) is middle Seifert-fibered in H and hyper Seifert-fibered
in H ′.

Theorem 3.1. Let K be a twisted torus knot K(p, q, r,m, n) lying in a genus
two Heegaard splitting (H,H ′; Σ) of S3 with 0 < q < p, gcd(p, q) = 1, and
0 < r ≤ p + q. K is a middle/hyper doubly Seifert twisted torus knot if
and only if the parameter set (p, q, r,m, n) belongs to one of the six classes in
Table 1. Table 2 describes H[K] and H ′[K] explicitly.
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Table 1. All possible values of parameters p, q, r,m, and n
for middle/hyper doubly Seifert twisted torus knot K(p, q, r,
m,n).

(p, q, r,m, n) satisfying

I ((α+ β)q + p̄, q, αq + p̄, 1, n) β > 1, 0 < p̄ < q, α ≥ 0,
II (βq + p̄, 2p̄− ε, βq + 2p̄, 1, n) β > 1, ε = ±1, p̄ > 1
III ((β + 1)p̄+ ε, βp̄+ ε, βp̄, 1, n) β > 1, ε = ±1, p̄+ ε > 1
IV ((β + 2)p̄+ ε, (β + 1)p̄+ ε, 2(β + 1)p̄+ ε, 1, n) β > 1, ε = ±1, 2p̄+ ε > 1
V ((α+ 1)p̄+ q̄, αp̄+ q̄, (α− 1)p̄+ q̄, 1, n) 0 ≤ q̄ < p̄, α > 0
VI ((α+ 1)p̄+ q̄, αp̄+ q̄, (2α− 1)p̄+ 2q̄, 1, n) 0 ≤ q̄ < p̄, α > 1

Table 2. H[K] and H ′[K] when K is middle Seifert-fibered
in H and hyper Seifert-fibered in H ′.

H[K] H ′[K]

I D2(β, αq + p̄) D2(q, n)
II D2(β, p̄) D2(2p̄− ε, n)
III D2(β, p̄+ ε) D2(βp̄+ ε, n)
IV D2(β, 2p̄+ ε) D2((β + 1)p̄+ ε, n)
V D2(2, (α− 1)p̄+ q̄) D2(αp̄+ q̄, n)
VI D2(3, (α− 2)p̄+ q̄) D2(αp̄+ q̄, n)

Proof. If the parameter set (p, q, r,m, n) of K belongs to one of the classes in
Table 1, then it is easy to check that (p, q, r,m, n) satisfies the conditions in
(1) and (2) in Proposition 2.5. In other words, K is middle Seifert-fibered in
H and hyper Seifert-fibered in H ′.

Now we prove the “only if” part. Assume that K is middle Seifert-fibered in
H and hyper Seifert-fibered in H ′. By Proposition 2.5 together with Lemma 2.3
for H ′ we have following conditions:

(1) the “middle” condition: m = 1, r ≡ ±βq′ mod p, where q′ ≡ ±q mod
p, 0 < 2q′ < p, 1 < β < p/q′, and p − βq′ > 1, and K is (β, p − βq′)
Seifert-fibered in H.

(2) the “hyper” condition: |n| > 1, q > 1, and r ≡ ±1 or ±p mod q, and
K is (q, n) Seifert-fibered in H ′.

The inequalities β > 1, p− βq > 1, |n| > 1, and q > 1 in the conditions come
from Seifert-fiberedness of K in H and H ′. If r = 1 or r = p + q, then by
Lemma 2.4, K is primitive in H. Therefore we may assume that 1 < q < p
and 1 < r < p+ q.

In the “middle” condition, the value q′ depends on the values p and q. Thus
we divide the argument into two cases: Case 1: p > 2q, Case 2: p < 2q.
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Case 1: Suppose p > 2q.
Then q′ = q in the “middle” condition on H and r ≡ ±βq mod p, where

1 < β < p/q. Thus since r < p+ q, the possible values of r are

r = βq, p− βq, or 2p− βq.(3.2)

On H ′, by the “hyper” condition, r ≡ ±1 or ±p mod q. Thus the possible
values of r are

r = kq + ε, kq − p, or p− kq,(3.3)

where ε = ±1.
We need to find the parameters p, q, and r by equating both values of r

in Equations 3.2 and 3.3. However r = βq in Equation 3.2 does not satisfy
Equation 3.3. Therefore there are six subcases to consider:
(1) r = p− βq = kq + ε, (2) r = p− βq = kq − p, (3) r = p− βq = p− kq,
(4) r = 2p− βq = kq + ε, (5) r = 2p− βq = kq − p, (6) r = 2p− βq = p− kq.

Subcase (1): r = p − βq = kq + ε. Then p = (k + β)q + ε and r = kq + ε.
This belongs to the solution (I) in Table 1 with α = k and p̄ = 1 if ε = 1, and
with α = k − 1 and p̄ = q − 1 if ε = −1.

Subcase (2): r = p− βq = kq − p. Then 2p = (k + β)q. Since gcd(p, q) = 1,
q = 2, p = k+β, and r = k−β. Also gcd(p, q) = 1 implies that p = k+β is odd
and so is r = k−β. This is part of the solution (I) with α = (k−β−1)/2, q = 2,
and p̄ = 1.

Subcase (3): r = p− βq = p− kq. Then k = β. If we let r = αq + p̄, where
0 < p̄ < q and α ≥ 0, then p = (α + β)q + p̄. This yields the solution (I) in
Table 1. Here p̄ 6= 0, otherwise p = (α+ β)q and due to gcd(p, q) = 1, q = 1, a
contradiction.

Subcase (4): r = 2p−βq = kq+ε. Then 2p = (k+β)q+ε. Since r = 2p−βq
and r < p + q, p− βq < q. By the “middle” condition p− βq > 1. Therefore,
we obtain the inequality 1 < p− βq < q, which implies βq < p < (β + 1)q and
equivalently 2βq < 2p < 2(β+ 1)q. But the equation 2p = (k+β)q+ ε induces
that

2βq < (k + β)q + ε < 2(β + 1)q.

If ε = 1, then β ≤ k < β + 2 and thus k = β or k = β + 1. If ε = −1, then
β < k ≤ β+ 2 and thus k = β+ 1 or k = β+ 2. However, if k = β or k = β+ 2,
then k+β is even. This is a contradiction to the equation 2p = (k+β)q+ ε. It
follows that k = β+ 1 and 2p = (2β+ 1)q+ ε. The equation 2p = (2β+ 1)q+ ε
gives rise to the determinant of the matrix as follows:∣∣∣∣ 2 2β + 1

q p

∣∣∣∣ = ε.

Since
∣∣∣ 2 2β+1
−ε −εβ

∣∣∣ = ε, q = 2p̄− ε, p = (2β+ 1)p̄− εβ = (2p̄− ε)β+ p̄ = βq+ p̄,

and r = 2p− βq = βq + 2p̄ for some p̄ > 0. But since p− βq > 1, p̄ > 1. This
yields the solution (II) in Table 1.
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Subcase (5): r = 2p− βq = kq− p. Then 3p = (k+ β)q. Since gcd(p, q) = 1
and q > 1, q = 3 and p = k + β. From the equation r = 2p − βq and the
inequalities r < p+ q and p− βq > 1, we obtain

1 < p− βq < q ⇔ 1 < k − 2β < 3.

Thus k = 2β + 2 and then p = 3β + 2, q = 3, and r = 3β + 4. This belongs to
the solution (II) with p̄ = 2 and ε = 1.

Subcase (6): r = 2p−βq = p−kq. Then p = (β−k)q, which is a contradiction
to gcd(p, q) = 1 and q > 1.

Case 2: Suppose p < 2q.
We let p = q + p̄. Then 2p̄ < p. Thus in the “middle” condition, q′ = p̄ and

r ≡ ±βp̄ mod p, 1 < β < p/p̄, and p− βp̄ > 1. The possible values of r are

r = βp̄, p− βp̄, 2p− βp̄, or p+ βp̄.(3.4)

In the “hyper” condition, r ≡ ±1 or r ≡ ±p mod q and q > 1, n > 1. The
equation r ≡ ±p mod q implies that

r = kq + ε, kq − p, or p− kq,

where ε = ±1. However since 1 < r < p + q, if r = p − kq, then either k = 0
or k = 1. If k = 0, then r = p. By the four possible r in Equation 3.4,
r = p = βp̄, p− βp̄, 2p− βp̄, or p+ βp̄. If p = βp̄ or 2p− βp̄, then p− βp̄ = 0,
a contradiction to p − βp̄ > 1, and if p = p − βp̄ or p + βp̄, then βp̄ = 0, a
contradiction as well. If k = 1, then r = p− q and thus K is primitive in H by
Lemma 2.4. Therefore the case where r = p − kq is excluded. Furthermore if
r = kq + ε, then due to p < 2q and 1 < r < p + q, k = 1 or 2. If r = kq − p,
then by the same reason, k = 2 or 3. Therefore the possible values of r in the
“hyper” condition are

r = kq + ε with k = 1, 2, or kq − p with k = 2, 3.(3.5)

Note that since gcd(p, q) = 1 and p = q + p̄, gcd(q, p̄) = 1. Now we break
into 4 subcases according to the possible r in Equation 3.4:

(1) r = βp̄, (2) r = p− βp̄, (3) r = 2p− βp̄, (4) r = p+ βp̄.

Subcase (1): r = βp̄. Since r satisfies Equation 3.5, either r = βp̄ = kq + ε
with k = 1, 2 or r = βp̄ = kq−p with k = 2, 3. Assume first that r = βp̄ = kq+ε
with k = 1, 2. If k = 2, then βp̄ = 2q+ε. It follows from the equation p−βp̄ > 1
that p > βp̄+ 1 = 2q+ 1 + ε, which is a contradiction to the inequality p < 2q.
Therefore k = 1, r = βp̄, q = βp̄+ ε, and p = q + p̄ = (β + 1)p̄+ ε. This gives
rise to the solution (III) in Table 1.

Now assume that r = βp̄ = kq − p with k = 2, 3. By replacing p by q + p̄ in
the equation βp̄ = kq − p, we obtain (β + 1)p̄ = (k − 1)q. If k = 2, then p̄ = 1
because of gcd(q, p̄) = 1. Therefore q = β + 1, p = β + 2, and r = β. This goes
into the solution (III) with p̄ = 1 and ε = 1. If k = 3, then (β+1)p̄ = 2q. Since
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gcd(q, p̄) = 1, either p̄ = 1 and 2q = β + 1, or p̄ = 2 and q = β + 1. Both cases
are impossible by p− βp̄ > 1 or an equivalent inequality q + (1− β)p̄ > 1.

Subcase (2): r = p−βp̄. First assume that r = p−βp̄ = kq+ε with k = 1, 2.
If k = 2, then p = 2q + βp̄ + ε and thus p > 2q, a contradiction to p < 2q.
Therefore k = 1 and p − βp̄ = q + ε. This equation with p replaced by q + p̄
induces (1 − β)p̄ = ε. Since β > 1, ε = −1 and (1 − β)p̄ = −1, which implies
that β = 2, p̄ = 1. Therefore p = q + 1 and r = q − 1. This belongs to the
solution (III) in Table 1 with p̄ = 1 and ε = 1.

Second assume that r = p− βp̄ = kq − p with k = 2, 3. From p = q + p̄, we
see that (2− β)p̄ = (k − 2)q. If k = 3, then (2− β)p̄ = q, which is impossible
because β > 1 and q > 1. Hence k = 2 and β = 2. Also p = q + p̄ and
r = p − 2p̄ = q − p̄. Let q = αp̄ + q̄, where 0 ≤ q̄ < p̄. Then p = (α + 1)p̄ + q̄
and r = (α− 1)p̄+ q̄. This yields the solution (V) in Table 1.

Subcase (3): r = 2p − βp̄. First assume that r = 2p − βp̄ = kq + ε with
k = 1, 2. Since p = q + p̄, we obtain (2 − β)p̄ = (k − 2)q + ε. If k = 1, then
q = (β − 2)p̄+ ε and p = (β − 1)p̄+ ε. This implies that p− βp̄ = −p̄+ ε ≤ 0,
a contradiction. Thus k = 2 and the equation (2− β)p̄ = (k− 2)q+ ε becomes
(2 − β)p̄ = ε. Consequently, ε = −1 and (2 − β)p̄ = −1. So β = 3 and p̄ = 1.
It follows that p = q + 1 and r = 2q − 1. This belongs to the solution (VI) in
Table 1 with p̄ = 1 and q̄ = 0.

Second assume that r = 2p − βp̄ = kq − p with k = 2, 3. Then (3 − β)p̄ =
(k − 3)q. If k = 2, then q = (β − 3)p̄, which implies that p̄ = 1, q = β − 3, and
p = β−2. This is a contradiction to the inequality p−βp̄ > 1. Therefore k = 3
and from the equation (3 − β)p̄ = (k − 3)q, β = 3. Consequently p = q + p̄
and r = 2q − p̄. Let q = αp̄+ q̄, where 0 ≤ q̄ < p̄. Then p = (α + 1)p̄+ q̄ and
r = (2α − 1)p̄ + q̄. Since p − βp̄ > 1, α > 1. This yields the solution (VI) in
Table 1.

Subcase (4): r = p+ βp̄. Assume that r = p+ βp̄ = kq + ε with k = 1, 2. If
k = 1, then p + βp̄ = q + ε, which is a contradiction to q < p. If k = 2, then
the equations p + βp̄ = kq + ε and p = q + p̄ induce (1 + β)p̄ = q + ε. Thus
q = (β + 1)p̄ + ε, p = (β + 2)p̄ + ε, and r = (2β + 2)p̄ + ε. This produces the
solution (IV) in Table 1.

Lastly we assume that r = p+ βp̄ = kq − p with k = 2, 3. Then (β + 2)p̄ =
(k − 2)q. Thus k = 3, p̄ = 1, and q = β + 2. Also p = β + 3 and r = 2β + 3.
This belongs to the solution (IV) in Table 1 with p̄ = 1 and ε = 1. �

4. Dehn surgeries on the middle/hyper doubly Seifert twisted torus
knots at a surface slope

In Section 3, we have shown that there are six infinite families of mid-
dle/hyper doubly Seifert twisted torus knots. By the definition of middle/hyper
doubly Seifert twisted torus knots, it follows that the Dehn surgeries at a sur-
face slope are either S2(a, b, c, d) or a graph manifold consisting of D2(a, b) and
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Figure 10. A torus knot T (p, q) and a disk D1 containing r
parallel arcs of T (p, q), where p = (α+β)q+ p̄ and r = αq+ p̄.

Figure 11. R-R diagrams of K when a) α > 0 and b) α = 0,
where (s, t) = ((ρ+ 1)β + 1, ρ+ 1) and (u, v) = (ρβ + 1, ρ).

D2(c, d). In this section we investigate Dehn surgeries on these knots at a sur-
face slope by finding regular fibers of H[K] = D2(a, b) and H ′[K] = D2(c, d).

Lemma 4.1. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a
genus two Heegaard surface Σ of S3 such that K is of type I in Table 1, i.e.,
(p, q, r,m, n) = ((α+β)q+ p̄, q, αq+ p̄, 1, n) with β > 1, 0 < p̄ < q, α ≥ 0. Then
for the surface slope γ, K(γ) is a non-Seifert-fibered graph manifold consisting
of D2(β, αq + p̄) and D2(q, n).

Proof. It follows from Table 2 in Theorem 3.1 that H[K] = D2(β, αq + p̄) and
H ′[K] = (q, n). Since K(γ) ∼= H[K]∪∂H ′[K] due to Lemma 2.1 in [4], in order
to show that K(γ) is a non-Seifert-fibered graph manifold we need only to prove
that two regular fibers of H[K] and H ′[K] intersect at least once transversely
in Σ.

Figure 10 shows a torus knot T (p, q) and a disk D1 containing r parallel arcs
of T (p, q) in V1, where p = (α+β)q+ p̄ and r = αq+ p̄. Then the corresponding
R-R diagram of K depends on the value α. If α > 0, then the R-R diagram
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Figure 12. Regular fibers τ and τ ′ of H[K] and H ′[K] respectively.

is given in Figure 11a. If α = 0, then we let q = ρp̄ + q̄, where ρ > 0 and
0 < q̄ < p̄. Here q̄ 6= 0, otherwise p̄ = 1 and thus H[K] = D2(β, αq + p̄) is
a solid torus by Lemma 2.4, a contradiction. The R-R diagram in this case is
shown in Figure 11b, where (s, t) = ((ρ+1)β+1, ρ+1) and (u, v) = (ρβ+1, ρ).

Using these R-R diagrams, we describe regular fibers of H[K] and H ′[K].
Since K is hyper Seifert-fibered in H ′, |n| > 1. Also by the R-R diagram of
K n is the only exponent of the generator y′. Therefore by Theorem 2.6 and
Remark 2.9 a curve which represents y′n and is disjoint from K is a regular
fiber of H ′[K]. Consider the curve τ ′ in Figure 12. Then it represents y′n and
is disjoint from K. Therefore τ ′ is a regular fiber of H ′[K].

To describe a regular fiber of H[K], we now record the curve K algebraically
with respect to H whose fundamental group is π1(H) = 〈x, y〉.

First assume that α > 0. In the R-R diagram in Figure 11a, we start with
q parallel arc entering into the (β + 1, 1)-connection in the (X,X ′)-handle. In
other words, we read off a word of K from the point A in Figure 11a lying on
q parallel edges entering into the (β + 1, 1)-connection in the (X,X ′)-handle.

The q parallel edges trace out

xβ+1y(xy)α−1 · · ·

and then they split into two subsets of parallel edges, one of which has q − p̄
parallel edges and the other has p̄ parallel edges. After splitting the q − p̄
parallel edges come back the starting point A while the p̄ parallel edges trace
out xy before they come back to A. This implies that K is the product of two
subwords

xβ+1y(xy)α−1 and xβ+1y(xy)α

with |xβ+1y(xy)α−1| = q − p̄ and |xβ+1y(xy)α| = p̄.
We perform a change of cutting disks of the handlebody H underlying the

R-R diagram, which induces an automorphism of π1(H) that takes y 7→ x−1y
and leaves x fixed. Then by this change of cutting disks, the two subwords
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Figure 13. A torus knot T (p, q) and a disk D1 containing r
parallel arcs of T (p, q), where p = βq + p̄ and r = βq + 2p̄.

are carried into xβyα and xβyα+1 respectively, where only xβ appears in the
word of K. Thus from Theorem 2.6 and Remark 2.9 a curve representing xβ

is a regular fiber of H[K]. Consider the curve τ in the R-R diagram of K in
Figure 12. Then τ is disjoint from K and represents xβ and is sent to xβ itself
after performing the automorphism y 7→ x−1y. Therefore τ is a regular fiber
of H[K] and intersects a regular fiber τ ′ of H ′[K].

Now assume that α = 0. By applying a similar argument as above, we see
that regular fibers of H[K] and H ′[K] lie as in Figure 12 and intersect once
transversely. This completes the proof. �

Lemma 4.2. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type II in Table 1, i.e.,
(p, q, r,m, n) = (βq + p̄, 2p̄− ε, βq + 2p̄, 1, n) with β > 1, ε = ±1, p̄ > 1. Then
for the surface slope γ, K(γ) is a non-Seifert-fibered graph manifold consisting
of D2(β, p̄) and D2(2p̄− ε, n).

Proof. Figure 13 shows a torus knot T (p, q) and a disk D1 containing r parallel
arcs of T (p, q) in V1, where p = βq + p̄ and r = βq + 2p̄. The corresponding
R-R diagram of K is depicted in Figure 14.

We start with the point A in Figure 14 lying on p̄ parallel edges entering into
the (0, 1)-connection in the (X,X ′)-handle to record the curve K algebraically.
Since q = 2p̄+ ε, where ε = ±1, we divide into two cases: ε = 1 and ε = −1.

First assume that ε = 1. Then q = 2p̄− 1 and the p̄ parallel edges trace out

x0y(xy)β · · ·
and then they split into two subsets of parallel edges, one of which has one
edge and the other has p̄− 1 parallel edges. The one edge traces out xy while
the p̄ − 1 parallel edges trace out xy(xy)β−1xy before they come back to the
starting point A. One can check this when β = 3, which is given in Figure 15.
Consequently K is the product of two subwords

x0y(xy)βxy = xy2(xy)β and
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Figure 14. R-R diagram of K.

Figure 15. R-R diagram of K when β = 3.

x0y(xy)βxy(xy)β−1xy = xy2(xy)2β

with |xy2(xy)β | = 1 and |xy2(xy)2β | = p̄− 1.
We perform a change of cutting disks of the handlebody H inducing an

automorphism x 7→ xy−1 of π1(H). Then by this automorphism, xy2(xy)β and
xy2(xy)2β are sent to yxβ+1 and yx2β+1 respectively.

We perform another change of cutting disks of H inducing an automorphism
y 7→ yx−β−1 to send yxβ+1 and yx2β+1 to y and yxβ respectively. It follows
that only xβ appears and thus a curve representing xβ is a regular fiber of
H[K].
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Figure 16. Regular fibers τ and τ ′ of H[K] and H ′[K] re-
spectively when β = 3.

Now assume that ε = −1. Then q = 2p̄ + 1 and from the R-R diagram the
p̄ parallel edges trace out

x0y(xy)βxy(xy)β−1 · · ·

and then they split into two subsets of parallel edges, one of which has p̄ − 1
parallel edges and the other has one edge. The p̄ − 1 parallel edges trace out
xy while the one edge traces out xy(xy)β−1xy before they come back to the
starting point A. So K is the product of two subwords

x0y(xy)βxy(xy)β−1xy = xy2(xy)2β and

x0y(xy)βxy(xy)β−1xy(xy)β−1xy = xy2(xy)3β

with |xy2(xy)2β | = p̄− 1 and |xy2(xy)3β | = 1.
By performing two automorphisms x 7→ xy−1 and y 7→ yx−2β−1 consecu-

tively, we see that xy2(xy)2β and xy2(xy)3β are carried to y and yxβ respec-
tively. Therefore a curve representing xβ is a regular fiber of H[K].

We have demonstrated that in both cases of ε = 1 and ε = −1, a curve
representing xβ is a regular fiber of H[K]. If we consider a curve τ as shown
in Figure 16, where β = 3, then τ is disjoint from K and represents

x0y(xy)β−1xyx0y−1 = (xy)β

in π1(H), which is sent to xβ after performing the two automorphisms x 7→
xy−1 and y 7→ yx−β−1 (y 7→ yx−2β−1, resp.) consecutively when ε = 1 (ε = −1,
resp.) as performed to K. This implies that the curve τ is a regular fiber of
H[K].
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Figure 17. A torus knot T (p, q) and a disk D1 containing r
parallel arcs of T (p, q), where p = (β+ 1)p̄+ ε, q = βp̄+ ε, and
r = βp̄.

Figure 18. R-R diagram of K.

As in the proof of Lemma 4.1, the curve τ ′ in Figure 16 is a regular fiber of
H ′[K]. Thus the two regular fibers intersect once transversely as desired. �

Lemma 4.3. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type III in Table 1, i.e.,
(p, q, r,m, n) = ((β+1)p̄+ε, βp̄+ε, βp̄, 1, n) with β > 1, ε = ±1, p̄+ε > 1. Then
for the surface slope γ, K(γ) is a non-Seifert-fibered graph manifold consisting
of D2(β, p̄+ ε) and D2(βp̄+ ε, n).

Proof. Figures 17 and 18 show a torus knot T (p, q) and a disk D1 containing
r parallel arcs of T (p, q) and R-R diagram of K depending on ε, where p =
(β + 1)p̄+ ε, q = βp̄+ ε, and r = βp̄ respectively.

First we assume that ε = 1. We read off a word of K from the one edge
entering into the (3, 2)-connection in the (X,X ′)-handle. It is easy to see from
the R-R diagram that the word of K is

x3y(xy)β−1(x2y(xy)β−1)p̄−1.

The automorphism y 7→ x−1y maps x3y(xy)β−1(x2y(xy)β−1)p̄−1 to

x2yβ(xyβ)p̄−1,
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Figure 19. Regular fibers τ and τ ′ of H[K] and H ′[K] re-
spectively when β = 4.

in which only β appears in the exponent of y. Thus a curve representing yβ

can be a regular fiber of H[K].
Consider a curve τ as shown in Figure 19a which illustrates the R-R diagram

of K when β = 4. Then the word of τ is (xy)β and becomes yβ after the
automorphism y 7→ x−1y. Also τ is disjoint from K. Therefore the curve τ is
a regular fiber and intersects a regular fiber τ ′ of H ′[K] once transversely as in
Figure 19a.

Now we assume that ε = −1. Note that since p̄+ ε > 1, p̄ > 2. Applying a
similar argument in the R-R diagram of Figure 18b as in the case that ε = 1,
we see that K represents

xy(xy)β−1(x2y(xy)β−1)p̄−1 = (xy)β(x2y(xy)β−1)p̄−1,

which is sent to xβ(xy−1xβ)p̄−1 = y−1x2β+1(y−1xβ+1)p̄−2 by the automor-
phism x 7→ xy−1. Then the automorphism y−1 7→ y−1x−β−1 maps

y−1x2β+1(y−1xβ+1)p̄−2
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Figure 20. A torus knot T (p, q) and a disk D1 containing r
parallel arcs of T (p, q), where p = (β+2)p̄+ε, q = (β+1)p̄+ε,
and r = 2(β + 1)p̄+ ε.

Figure 21. R-R diagram of K.

to y−p̄+1xβ . Therefore a curve representing xβ can be a regular fiber of H[K].
The curve τ in Figure 19b which has (xy)β in π1(H) is a regular fiber of H[K]
and also intersects a regular fiber τ ′ of H ′[K] once transversely as in Figure
19b. �

Lemma 4.4. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type IV in Table 1, i.e.,
(p, q, r,m, n) = ((β + 2)p̄ + ε, (β + 1)p̄ + ε, 2(β + 1)p̄ + ε, 1, n) with β > 1,
ε = ±1, 2p̄+ ε > 1. Then for the surface slope γ, K(γ) is a non-Seifert-fibered
graph manifold consisting of D2(β, 2p̄+ ε) and D2((β + 1)p̄+ ε, n).

Proof. A torus knot T (p, q) and a disk D1 containing r parallel arcs of T (p, q)
in V1 are illustrated in Figure 20, where p = (β + 2)p̄ + ε, q = (β + 1)p̄ + ε,
and r = 2(β + 1)p̄ + ε. The corresponding R-R diagram of K is depicted in
Figure 21.
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We start with the p̄ parallel edges which are innermost in the βp̄ parallel
edges entering into the (0, 1)-connection in the (X,X ′)-handle. Then as han-
dled in the previous types, we can show that when ε = 1, K is the product of
two subwords

x0yxyxyxy(x0yxy)β−1 = (xy)2(xy2)β and

x0yxyxyxyxy(x0yxy)β−1 = (xy)3(xy2)β

with |(xy)2(xy2)β | = p̄− 1 and |(xy)3(xy2)β | = 1, and when ε = −1, K is the
product of two subwords

x0yxyxy(x0yxy)β−1 = xy(xy2)β and

x0yxyxyxy(x0yxy)β−1 = (xy)2(xy2)β

with |xy(xy2)β | = 1 and |(xy)2(xy2)β | = p̄− 1.
This can be confirmed from Figure 22, which shows the R-R diagram of K

when β = 2. After applying two automorphisms y 7→ x−1y and x−1 7→ x−1y−2

consecutively, when ε = 1, they are sent to y2x−β and y3x−β respectively, and
when ε = −1, they are sent to yx−β and y2x−β respectively. Therefore in
both cases, a curve representing x−β is a regular fiber of H[K]. The curve τ
in the original R-R diagram of K shown in Figure 22, where β = 2, represents
(x0yxy)β in π1(H), which is sent to x−β after performing y 7→ x−1y and
x−1 7→ x−1y−2 consecutively as performed to K. Thus τ is a regular fiber of
H[K] and intersects a regular fiber τ ′ of H ′[K] once transversely as in Figure
22. �

Figure 22. Regular fibers τ and τ ′ of H[K] and H ′[K] re-
spectively when β = 2.
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Lemma 4.5. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type V in Table 1, i.e.,
(p, q, r,m, n) = ((α+ 1)p̄+ q̄, αp̄+ q̄, (α− 1)p̄+ q̄, 1, n) with 0 ≤ q̄ < p̄, α > 0.
Then for the surface slope γ, K(γ) is a non-Seifert-fibered graph manifold con-
sisting of D2(2, (α− 1)p̄+ q̄) and D2(αp̄+ q̄, n).

Figure 23. A torus knot T (p, q) and a disk D1 containing r
parallel arcs of T (p, q), where p = (α+1)p̄+ q̄, q = αp̄+ q̄, and
r = (α− 1)p̄+ q̄.

Figure 24. R-R diagram of K when a) α > 1 and b) α = 1.

Proof. Figure 23 shows a torus knot T (p, q), where p = (α + 1)p̄ + q̄ and
q = αp̄ + q̄, and a disk D1 containing r = (α − 1)p̄ + q̄ parallel arcs of T (p, q)
in V1. The corresponding R-R diagram depends on the value α. If α > 1, then
the R-R diagram is shown in Figure 24a. If α = 1, we let p̄ = ρq̄ + c, where
0 < c < p̄. Here c 6= 0, otherwise q̄ = 1 and H[K] = D2(2, (α − 1)p̄ + q̄) is
a solid torus, a contradiction. The R-R diagram of K has the form shown in
Figure 24b. Observe that the two R-R diagrams have the same form. Therefore
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Figure 25. Regular fibers τ and τ ′ of H[K] and H ′[K] respectively.

finding regular fibers when α = 1 can be achieved in the same manner as when
α > 1.

Assume that α > 1. As before, we record the word of K with respect to
H from the p̄ parallel arcs entering into the (3, 2)-connection in the (X,X ′)-
handle. Then it follows that K is the product of two subwords

x3(yx)α−2y and x3(yx)α−2yxy

with |x3(yx)α−2y| = p̄− q̄ and |x3(yx)α−2yxy| = q̄.
An automorphism y 7→ yx−1 sends them into x2yα−1 and x2yα respectively.

Thus a curve representing x2 is a regular fiber of H[K]. The curve τ in the
original R-R diagram of K shown in Figure 25a represents x2 in π1(H), which
is sent to x2 after performing the automorphism y 7→ yx−1. Therefore τ is a
regular fiber of H[K] and intersects a regular fiber τ ′ of H ′[K] once as shown
in Figure 25.

For the case that α = 1, we apply a similar argument. Then regular fibers
τ and τ ′ appear in the R-R diagram of K as in Figure 25b, which shows that
they intersect once transversely. �

Lemma 4.6. Let K = K(p, q, r,m, n) be a twisted torus knot lying in a genus
two Heegaard surface Σ of S3 such that K is of type VI in Table 1, i.e.,
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Figure 26. A torus knot T (p, q) and a disk D1 containing r
parallel arcs of T (p, q), where p = (α+1)p̄+ q̄, q = αp̄+ q̄, and
r = (2α− 1)p̄+ 2q̄.

Figure 27. R-R diagram of K.

(p, q, r,m, n) = ((α + 1)p̄ + q̄, αp̄ + q̄, (2α − 1)p̄ + 2q̄, 1, n) with 0 ≤ q̄ < p̄,
α > 1. Then for the surface slope γ, K(γ) is a non-Seifert-fibered graph man-
ifold consisting of D2(3, (α− 2)p̄+ q̄) and D2(αp̄+ q̄, n).

Proof. A torus knot T (p, q), where p = (α + 1)p̄ + q̄ and q = αp̄ + q̄, and a
disk D1 containing r = (2α − 1)p̄ + 2q̄ are depicted in Figure 26. Also its
corresponding R-R diagram of K is given in Figure 27.

As done in Type IV, we start with the p̄ parallel arcs which are innermost
in the 2p̄ parallel arcs entering into the (1, 1)-connection in the (X,X ′)-handle.
Then K is the product of two subwords

xyxy(x0yxy)α−2(xy) = (xy2)α−2(xy)3 and

xyxy(x0yxy)α−2x0yxy(xy) = (xy2)α−1(xy)3
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Figure 28. Regular fibers τ and τ ′ of H[K] and H ′[K] respectively.

with |(xy2)α−2(xy)3| = p̄− q̄ and |(xy2)α−1(xy)3| = q̄.
They are carried into yα−2x3 and yα−1x3 respectively by two automorphisms

x 7→ xy−1 and y 7→ x−1y in a row. Therefore a curve representing x3 is a
regular fiber of H[K]. The curve τ in the R-R diagram of K of the form shown
in Figure 28 has a word (xy)3, which is sent to x3 by two automorphisms
x 7→ xy−1 and y 7→ x−1y. This implies that the curve τ is a regular fiber of
H[K] and intersects a regular fiber τ ′ of H ′[K] once transversely as shown in
Figure 28. �
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