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TOPOLOGICALLY STABLE MEASURES IN

NON-AUTONOMOUS SYSTEMS

Pramod Das and Tarun Das

Abstract. We introduce and study notions of expansivity, topological

stability and persistence for Borel measures with respect to time vary-
ing bi-measurable maps on metric spaces. We prove that on Mandelkern

locally compact metric spaces expansive persistent measures are topolog-
ically stable in the class of all time varying homeomorphisms.

1. Introduction

For several decades, a discrete dynamical system induced by a continuous
map or a homeomorphism on a compact metric space has been the most pop-
ular and attractive formulation for a dynamical system to a large number of
mathematicians all over the world. Since the tools to investigate the dynamics
is mainly topological, the study of such system is a part of the mathematical
field of topological dynamics. One of the broadly studied dynamical notions
in topological dynamics is expansivity which was introduced [10] by Utz in the
middle of the twentieth century. On the other hand, the most fundamental
topological dynamical notion of shadowing was originated from Anosov closing
lemma [1]. In [11], Walters proved that on compact metric spaces expansive
homeomorphisms with shadowing are topologically stable. Historically, this
celebrated result is popularly known as “Walters stability theorem”. In [3],
authors improved this result by showing that persistent expansive homeomor-
phisms on compact metric spaces are topologically stable. Recently, the notion
of topological stability was studied [9] in the perspective of non-autonomous
systems which is the original nature of many real life problems. The rich
mathematical literature around “Walters stability theorem” interested authors
of [5] to introduce a notion of topological stability for Borel measures so that
it is possessed by any expansive measure [6] with shadowing. We naturally call
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this measurable version of “Walters stability theorem” as “Measurable stability
theorem”.

Our purpose in this paper is to look at these notions of expansivity, per-
sistence and topological stability for Borel measures in the perspective of non-
autonomous systems and prove “Measurable stability theorem” in this settings.
In particular, we determine the size of the set of points with converging semior-
bits under time varying bi-measurable maps with respect to any expansive outer
regular measure on separable metric spaces. Consequently, we show that every
equicontinuous time varying uniform equivalence is aperiodic with respect to
expansive outer regular measure. We prove that every stable class of a time
varying measurable map has measure zero with respect any positively expansive
outer regular measure. Finally, we show that on Mandelkern locally compact
metric spaces an expansive persistent measure is topologically stable in the
class of all time varying homeomorphisms.

2. Preliminaries

Throughout the paper, Z (resp. N) denotes the set of all (resp. non-negative)
integers. We consider (X, d) to be any metric space unless otherwise stated and
for n ≥ 1, fn : X → X to be a sequence of bi-measurable maps (bijective maps
for which f and f−1 are measurable) and f0 : X → X to be the identity map.
The family F = {fn}n∈N is called a time varying bi-measurable map on X.
The inverse of F is given by F−1 = {f−1n }n∈N. Let us denote

Fn =

{
fn ◦ fn−1 ◦ · · · ◦ f1 ◦ f0 for all n ≥ 0,

f−1−n ◦ f−1−(n−1) ◦ · · · ◦ f
−1
1 ◦ f−10 for all n < 0.

It is clear that F0 is the identity on X. We call (X,F ) an invertible
non-autonomous discrete dynamical system induced by a time varying bi-
measurable map.

The dynamics of a self-homeomorphism f of a metric space X is a special
case if fn = f for all n ∈ N. We denote

F[i,j] =

{
fj ◦ fj−1 ◦ · · · ◦ fi+1 ◦ fi for any i ≤ j,
the identity map on X for any i > j,

F−1[i,j] =

{
f−1j ◦ f−1j−1 ◦ · · · ◦ f

−1
i+1 ◦ f

−1
i for any i ≤ j,

the identity map on X for any i > j.

For k ≥ 1, we define F k = {gn}n∈N, where gn = F[(n−1)k+1,nk]. The se-
quence O(x0) = {Fn(x0)}n∈Z is called the orbit of x0 under the time varying
bi-measurable map F . A subset Y ⊂ X is said to be F -invariant if fn(Y ) ⊂ Y
for all n ∈ N, equivalently, Fn(Y ) ⊂ Y for all n ∈ Z.

A homeomorphism h : X → X is called a uniform equivalence if both h and
h−1 are uniformly continuous. If each fn (n ≥ 1) is a homeomorphism (resp.
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uniform equivalence), then F = {fn}n∈N is called a time varying homeomor-
phism (resp. uniform equivalence). A time varying homeomorphism F is said
to be equicontinuous if {F[m,n], F

−1
[m,n] | 0 ≤ m ≤ n} is an equicontinuous family

of functions.
Let (X, d1) and (Y, d2) be two metric spaces. Let F = {fn}n∈N and G =

{gn}n∈N be time varying bi-measurable maps on X and Y respectively. Then,
F and G are said to be topologically conjugate if there exists a homeomorphism
h : X → Y such that h ◦ fn = gn ◦ h for all n ∈ N. In particular, if h is a
uniform equivalence, we say that F and G are uniformly conjugate.

Let (X, d) be a metric space and d1(x, y) =min{d(x, y), 1} be the standard
bounded metric on X. Let H(X) be the metric space of all bi-measurable
maps with the metric η(f, g) =supx∈Xd1(f(x), g(x)). If G(X) is the collection
of all time varying bi-measurable maps, then we define a metric p on G(X)
as p(F,G) =max{ supn∈N η(fn, gn), supn∈N η(f−1n , g−1n )}, where F = {fn}n∈N
and G = {gn}n∈N.

Let P(X) be the power set of X and H : X → P(X) be a set valued map
on X. We define the domain of H by Dom(H) = {x ∈ X | H(x) 6= φ}. H
is said to be compact valued if H(x) is compact for each x ∈ X. Recall from
[5] that d(H, Id) < ε for some ε > 0 if H(x) ⊂ B(x, ε) for each x ∈ X, where
B(x, ε) = {y ∈ X | d(x, y) < ε} is the open ε-ball with center x. On the
other hand, B[x, ε] = {y ∈ X | d(x, y) ≤ ε} denotes the closed ε-ball with
center x. If K is a subset of X, then B[K, ε] = {x ∈ X | d(x,K) ≤ ε}, where
d(x,K) = inf{d(x, y) | y ∈ K}. H is called upper semi-continuous if for every
x ∈ Dom(H) and every open neighbourhood O of H(x) there exists δ > 0 such
that H(y) ⊂ O for all y ∈ X with d(x, y) < δ.

A metric space is said to be Mandelkern locally compact [7] if every bounded
set is contained in a compact set.

Borel measures on X play a major role in this paper. The following are some
of the well-known and useful properties of such measures.

Let µ be a Borel measure on X. We call a subset X0 of X has measure zero
if µ(A) = 0 for any measurable subset A of X0. A point x ∈ X is called an
atom for µ if µ({x}) > 0. µ is said to be non-atomic if it has no atom. µ is said
to be outer regular if for every measurable set A and any ε > 0, there is an open
set O containing A such that µ(O \ A) < ε. The pullback measure of µ with
respect to a measurable map f : X → Y is defined by f∗(µ)(A) = µ(f−1(A))
for all Borel measurable set A ⊂ Y .

The following result [8, Corollary 6.1] is useful because it guarantees ex-
istence of non-atomic measure, which is a standard assumption for a Borel
measure to be expansive.

Theorem 2.1. Let X be a complete separable metric space with uncountably
many points. Then, there exists a non-atomic measure on X.

According to the remark in [4], the following version of Lusin’s theorem holds
true.
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Theorem 2.2. Let X be a second countable topological space endowed with an
outer regular measure µ and f : X → X be a measurable map. Then, for every
ε > 0 there exists a measurable subset Cε with µ(X \Cε) < ε such that f |Cε is
continuous.

Theorem 2.3. Let µ be a Borel measure on a topological space. Then, for
every measurable Lindelöf subset K with µ(K) > 0 there are z ∈ K and open
neighborhood U of z such that µ(K ∩ W ) > 0 for every open neighborhood
W ⊂ U of z.

Proof. Otherwise, for every z ∈ K there is open neighborhood Uz ⊂ U satisfy-
ing µ(K ∩Uz) = 0. Since K is Lindelöf, the open cover {K ∩Uz : z ∈ K} of K
admits a countable sub-cover, i.e., there is a sequence {zl}l∈N in K satisfying
K =

⋃
l∈N(K ∩ Uzl). So, µ(K) ≤

∑
l∈N µ(K ∩ Uzl) = 0, a contradiction. �

3. Expansive measures

Here, we introduce and investigate the notion of expansivity for Borel mea-
sures with respect to time varying bi-measurable maps. This notion extends
the autonomous notion of expansivity for Borel measures introduced in [6].

Definition 3.1. Let F = {fn}n∈N be a time varying bi-measurable (resp. mea-
surable) map on X. Then, µ is said to be expansive (resp. positively ex-
pansive) with respect to F if there exists δ > 0 such that µ(Γδ(x)) = 0
(resp. µ(Φδ(x)) = 0) for all x ∈ X, where Γδ(x) = {y ∈ X | d(Fn(x), Fn(y)) ≤ δ
for all n ∈ Z} and Φδ(x) = {y ∈ X | d(Fn(x), Fn(y)) ≤ δ for all n ∈ N}. Such
δ is called an expansive (resp. positively expansive) constant for µ.

Remark 3.2. (i) An expansive measure must be non-atomic because for any
x ∈ X, Γδ(x) contains x.

(ii) A non-atomic Borel measure is expansive with respect to any expansive
time varying bi-measurable map introduced in [9].

Example 3.3. Let µ be an expansive measure for a self-homeomorphism f
of a metric space X and Is is an isometry on X. Then, µ is expansive with
respect to F = {fn}n∈N, where fn = Is for n = 1, 3, 6, 10, 15, . . . and fn = f
otherwise.

Proposition 3.4. Let F = {fn}n∈N and G = {gn}n∈N be time varying bi-
measurable maps on (X, d1) and (Y, d2), respectively. If F is uniformly conju-
gate to G, then µ is expansive with respect to F if and only if it is expansive
with respect to G.

Proof. Let µ be expansive with respect to F with an expansive constant δ > 0.
Let h be a uniform conjugacy between F and G. Then, observe that Fn◦h−1 =
h−1 ◦ Gn for all n ∈ N. Since h−1 is uniformly continuous, there exists δ > 0
such that d2(x, y) ≤ δ implies d1(h−1(x), h−1(y)) ≤ ε. Let us fix x ∈ Y . Then,

µ({y ∈ Y | d2(Gn(x), Gn(y)) ≤ δ for all n ∈ Z})
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≤ µ({y ∈ Y | d1(h−1(Gn(x)), h−1(Gn(y))) ≤ ε for all n ∈ Z})
= µ({y ∈ Y | d1(Fn(h−1(x)), Fn(h−1(y))) ≤ ε for all n ∈ Z}) = 0.

This shows that µ is expansive with respect to G, with expansive constant
δ. The converse holds in similar manner because of the fact that h is a uniform
equivalence. �

Theorem 3.5. Let F = {fn}n∈N be a time varying bi-measurable map on X.
Then, µ is expansive with respect to F if and only if it is expansive with respect
to F−1.

Proof. From the fact F−n = F−1n it follows that µ({y ∈ X |Fn(y) ∈ Bd[Fn(x), δ]
for all n ∈ Z}) = 0 if and only if µ({y ∈ X | F−1n (y) ∈ Bd[F−1n (x), δ] for all
n ∈ Z}) = 0. This clearly shows that µ is expansive with respect to F if and
only if it is expansive with respect to F−1. �

Theorem 3.6. Let F = {fn}n∈N be a time varying uniform equivalence on
X such that the family {fn, f−1n }n∈N is equicontinuous. Then, µ is expansive
with respect to F if and only if it is expansive with respect to G = F k =
{F[(n−1)k+1,nk]}n∈N for all k ∈ Z.

Proof. In view of Theorem 3.5, it is enough to prove the result for k ≥ 1.
Fix k ≥ 1 and let e be an expansive constant for µ. Since {fn, f−1n }n∈N is
equicontinuous, for any n ∈ Z and any j with nk + 1 ≤ j ≤ (n + 1)k, the
homeomorphisms F[nk+1,j] are uniformly continuous. Thus, there is δj > 0
such that d(x, y) < δj implies d(F[nk+1,j](x), F[nk+1,j](y)) < e for any n ∈ Z
and all j with nk + 1 ≤ j ≤ (n + 1)k. Observe that δj does not depend on
n because of the equicontinuity of {fn, f−1n }n∈N. Then, d(x, y) < δ implies
d(F[nk+1,j](x), F[nk+1,j](y)) < e for all n ∈ Z, where δ =min{δj | nk + 1 ≤
j ≤ (n + 1)k}. Observe that for any j ∈ Z there exists n ∈ Z such that
nk + 1 ≤ j ≤ (n+ 1)k and Gn = Fnk for all n ∈ N, k ∈ Z. Now,

µ({y ∈ X | d(Gn(x), Gn(y)) ≤ δ for all n ∈ Z})
= µ({y ∈ X | d(Fnk(x), Fnk(y)) ≤ δ for all n ∈ Z})
= µ({y ∈ X | d(F[nk+1,j](Fnk(x)), F[nk+1,j](Fnk(y))) ≤ e

for all n ∈ Z and all j ∈ Z})
= µ({y ∈ X | d(Fj(x), Fj(y)) ≤ e for all j ∈ Z}) = 0.

This shows that µ is expansive with respect to F k with expansive constant
δ.

Conversely, suppose that µ is expansive with respect to F k with expansive
constant δ. Then for x ∈ X, µ({y ∈ X | d(F kn (x), F kn (y)) ≤ δ for all n ∈ Z}) = 0
which implies µ({y ∈ X | d(Fnk(x), Fnk(y)) ≤ δ for all n ∈ Z}) = 0. This
further implies that µ({y ∈ X | d(Fn(x), Fn(y)) ≤ δ for all n ∈ Z}) = 0.
Therefore, µ is expansive with respect to F with expansive constant δ. �
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The following result is interesting in view of the fact that an equicontinuous
homeomorphism on a compact metric space cannot be expansive.

Theorem 3.7. Let F = {fn}n∈N be an equicontinuous time varying homeo-
morphism on a Lindelöf metric space X. Then, there exists no Borel measure
which is expansive with respect to F .

Proof. Suppose that µ is an expansive measure with respect to F . Let e be
an expansive constant for µ. Since F is equicontinuous time varying home-
omorphism, the family {Fm, F−m}m∈N is equicontinuous. Then, for e there
exists δ > 0 such that d(x, y) < δ implies d(Fn(x), Fn(y)) < e for all n ∈ Z.
Thus, B(x, δ) ⊂ Γe(x) and hence, µ(B(x, δ)) ≤ µ(Γe(x)) = 0 for all x ∈ X.
Now, {B(x, δ) | x ∈ X} is an open cover for X and since X is Lindelöf
there is {xi}i∈N such that {B(xi, δ) | i ∈ N} is an open covering for X. So,
µ(X) ≤ Σi∈Nµ(B(xi, δ)), which implies µ(X) = 0, a contradiction. �

The following corollary of the above result can be verified using Theorem
2.1.

Corollary 3.8. An equicontinuous time varying homeomorphism on a com-
plete separable metric space with uncountably many points cannot be expansive.

Definition 3.9. Let F = {fn}n∈N be a time varying bi-measurable map on
X. Then,

(i) the ω-limit set of a point x ∈ X is given by ω(F, x) = {y ∈ X |
limk→∞Fnk(x) = y for some strictly increasing sequence of integers}.

(ii) the α-limit set of a point x ∈ X is given by α(F, x) = {y ∈ X |
limk→∞Fnk(x) = y for some strictly decreasing sequence of integers}.

We say that a point x ∈ X has converging semiorbits under F if both ω(F, x)
and α(F, x) consists of single point. The set of such points is denoted by A(F ).

For given x, y ∈ X and m,n ∈ N+, we define
A(x, y, n,m) = {z ∈ X | max{d(F−i(z), x), d(Fi(z), y)} ≤ 1

n for all i ≥ m}.
Lemma 3.10. Let F = {fn}n∈N be a time varying bi-measurable map on a
separable metric space X. Then, there exists a sequence xk ∈ X such that

A(F ) ⊂
⋂
n∈N+

⋃
k,k′,m∈N+ A(xk, xk′ , n,m).

Proof. If z ∈ A(F ), then α(F, z) and ω(F, z) reduce to single points x and y re-
spectively. Then, for each n ∈ N+ there exists m ∈ N+ such that d(F−i(z), x) ≤
1
2n and d(Fi(z), y) ≤ 1

2n for all i ≥ m. If xk is dense in X, there are k, k′ ∈ N+

such that d(xk, x) ≤ 1
2n and d(xk′ , y) ≤ 1

2n . Therefore,

max{d(F−i(z), xk), d(Fi(z), xk′)} ≤
1

n
for all i ≥ m. This completes a proof. �

The following result is an extension of [2, Lemma 2.6] to non-autonomous
systems.
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Theorem 3.11. Let F = {fn}n∈N be a time varying bi-measurable map on
a separable metric space X. If µ is an expansive outer regular measure with
respect to F , then the set of points with converging semiorbits under F has
measure zero.

Proof. Suppose there exists A ⊂ A(F ) such that µ(A) > 0. By Lemma 3.10,
there is a sequence xk ∈ X such thatA(F )⊂

⋂
n∈N+

⋃
k,k′,m∈N+ A(xk, xk′ , n,m).

It follows that A ⊂
⋃
k,k′,m∈N+ A(xk, xk′ , n,m) for all n ∈ N+. Thus, we

can choose k, k′, n,m ∈ N+ with 1
n ≤

e
2 such that µ(A(xk, xk′ , n,m)) >

0. Hereafter, we fix such k, k′, n,m ∈ N+ and for simplicity we put B =
A(xk, xk′ , n,m).

Since X is separable, it is a second countable metric space. Since µ is outer
regular, therefore Theorem 2.2 implies that for every ε > 0 there exists a
measurable set Cε ⊂ X with µ(X \ Cε) < ε such that Fi |Cε is continuous for

all | i |≤ m. Taking ε = µ(B)
2 we get a measurable set C = Cµ(B)

2
such that

Fi |C is continuous for all | i |≤ m and µ(B ∩ C) > 0.
Further, since K = B∩C is a Lindelöf subspace of X, by Theorem 2.3 there

are z ∈ B ∩ C and δ0 > 0 such that µ(B ∩ C ∩ B[z, δ]) > 0 for all 0 < δ < δ0.
Since z ∈ C and Fi |C is continuous for all | i |≤ m, we can fix 0 < δ < δ0 such
that d(Fi(z), Fi(w)) ≤ e for all | i |≤ m, whenever d(z, w) ≤ δ with w ∈ C.

We now prove that B ∩ C ∩B[z, δ] ⊂ Γe(z). Let w ∈ B ∩ C ∩B[z, δ] which
implies w ∈ C ∩ B[z, δ] and hence, d(Fi(z), Fi(w)) ≤ e for all | i |≤ m. Again
z, w ∈ B = A(xk, xk′ , n,m), so observe that d(Fi(z), Fi(w)) ≤ e for all | i |≥ m.
Combining we get d(Fi(z), Fi(w)) ≤ e for all i ∈ Z which implies w ∈ Γe(z)
and hence, B ∩ C ∩ B[z, δ] ⊂ Γe(z). Thus µ(B ∩ C ∩ B[z, δ]) = 0, which is a
contradiction. �

Example 3.12. For n ≥ 0, let fn : R→ R be given by fn(x) = x if x ∈ Q and
fn(x) = (n+ 1)x if x ∈ R \Q. Then, the Lebesgue measure on R is expansive
with respect to the time varying bi-measurable map F = {fn}n∈N. Thus, the
set of points with converging semiorbits under F has measure zero with respect
to µ.

Definition 3.13. Let F = {fn}n∈N be a time varying bi-measurable map on
X. A point p ∈ X is said to be periodic if there exists an integer k > 0 such
that Fik+j(p) = Fj(p) for all i ∈ Z and 0 ≤ j < k. The positive integer k is said
to be a period of p. A set A ⊂ X is said to be periodic if there exists k > 0 such
that each point in A is periodic with period k. A time varying bi-measurable
map F is said to be aperiodic with respect to µ if every measurable periodic
subset of X has measure zero.

Corollary 3.14. If F = {fn}n∈N is a time varying uniform equivalence on a
separable metric space X such that {fn, f−1n }n∈N is equicontinuous, then it is
aperiodic with respect to any expansive outer regular measure.
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Proof. Let µ be an expansive outer regular measure with respect to F . Let m
be a positive integer and A be a measurable subset such that for each x ∈ A,
we have Fim+j(x) = Fj(x) for all i ∈ Z and 0 ≤ j < m. Thus, the orbit of x
is given by {F0(x), F1(x), . . . , Fm−1(x)}. Since Fnm(x) = {x} for all n ≥ 1, we
have A ⊂ A(Fm), where Fm = {gk = F[(n−1)m+1,nm]}n∈N. By Theorem 3.6, µ
is expansive with respect to Fm. So by Theorem 3.11, µ(A) ≤ µ(A(Fm)) = 0.
This completes our proof. �

Definition 3.15. Let F = {fn}n∈N be a time varying measurable map on X.
The stable class of p ∈ X is defined as W s(p) = {x ∈ X | for every ε > 0 there
exists N ∈ N such that d(Fn(p), Fn(x)) < ε for all n ≥ N}.

Theorem 3.16. Let F = {fn}n∈N be a time varying measurable map on a
separable metric space X and µ is a positively expansive outer regular measure
with respect to F . Then, any stable class of F has measure zero.

Proof. Let p ∈ X and e be a positively expansive constant for µ. If AN =
{x ∈ X | d(Fn(p), Fn(x)) < e

2 for all n ≥ N}, then it is easy to verify that
W s(p) ⊂

⋃
N≥0AN and each AN is measurable. It is enough to show that

µ(
⋃
N≥1AN ) = 0.

If possible, suppose µ(
⋃
N≥1AN ) > 0. Then, there is M ≥ 1 such that

µ(AM ) > 0.
Since X is separable, it is a second countable metric space. Since µ is outer

regular, therefore Theorem 2.2 implies that for every ε > 0 there exists a
measurable set Cε ⊂ X with µ(X \ Cε) < ε such that Fi |Cε is continuous for

all 0 ≤ i ≤ M . Taking ε = µ(AM )
2 we get a measurable set C = Cµ(AM )

2

such

that Fi |C is continuous for all 0 ≤ i ≤M and µ(AM ∩ C) > 0.
Further, since K = AM ∩ C is a Lindelöf subspace of X, by Theorem 2.3

there are z ∈ AM ∩ C and δ0 > 0 such that µ(AM ∩ C ∩ B[z, δ]) > 0 for all
0 < δ < δ0. Since z ∈ C and Fi |C is continuous for all 0 ≤ i ≤ M , we can
fix 0 < δ < δ0 such that d(Fi(z), Fi(w)) ≤ e for all 0 ≤ i ≤ M , whenever
d(z, w) ≤ δ with w ∈ C.

We now prove that AM ∩ C ∩ B[z, δ] ⊂ Φe(z). Let w ∈ AM ∩ C ∩ B[z, δ]
which implies w ∈ C ∩ B[z, δ] and hence, d(Fi(z), Fi(w)) ≤ e for all 0 ≤ i ≤
M . Again z, w ∈ AM , so observe that d(Fi(z), Fi(w)) ≤ e for all i ≥ M .
Combining we get d(Fi(z), Fi(w)) ≤ e for all i ∈ N which implies w ∈ Φe(z)
and hence, AM ∩C ∩B[z, δ] ⊂ Φe(z). Thus µ(B ∩C ∩B[z, δ]) = 0, which is a
contradiction. �

4. Measurable stability theorem

The main purpose of this section is to provide a sufficient condition for an
expansive measure to possess topological stability. In particular, we prove the
following result.
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Theorem 4.1. Let F = {fn}n∈N be a time varying homeomorphism on a
Mandelkern locally compact metric space X. If µ is expansive and persistent
with respect to F , it is topologically stable with respect to F in the class of all
time varying homeomorphisms.

The following notions of persistence are generalizations of the autonomous
notion of persistence introduced in [3].

Definition 4.2. Let F = {fn}n∈N be a time varying bi-measurable map on
X. Then,

(i) F is said to be persistent if for every ε > 0 there exists δ > 0 such that
if G = {gn}n∈N is another time varying bi-measurable map with p(F,G) < δ,
then for each x ∈ X there exists y ∈ X such that d(Fn(y), Gn(x)) < ε for all
n ∈ Z.

(ii) µ is said to be persistent with respect to F if for every ε > 0 there
exists δ > 0 and a measurable set B ⊂ X with µ(X \ B) = 0 such that if
G = {gn}n∈N is another time varying bi-measurable map with p(F,G) < δ,
then for each x ∈ B there exists y ∈ X such that d(Fn(y), Gn(x)) < ε for all
n ∈ Z.

Remark 4.3. Any Borel measure is persistent with respect to a persistent time
varying bi-measurable map.

Theorem 4.4. Let F = {fn}n∈N be a time varying bi-measurable map on X
and h : X → X be a uniform equivalence. If µ is persistent with respect to F ,
then h−1∗ (µ) is persistent with respect to F ′ = {f ′n}n∈N, where f ′n = h−1 ◦fn ◦h
for all n ∈ N.

Proof. Fix 0 < ε < 1. Then, there exists 0 < ε′ < ε such that d1(a, b) < ε′

implies d1(h−1(a), h−1(b)) < ε. Let 0 < δ′ < 1 and a measurable set B ⊂ X
with µ(X \ B) = 0 be given for ε′ by the persistence of µ with respect to F .
Again, there exists 0 < δ < 1 such that d1(a, b) < δ implies d1(h(a), h(b)) < δ′.

Suppose G = {gn}n∈N is another time varying bi-measurable map such that
p(F ′, G) < δ, i.e., max{supn≥0 η(f ′n, gn), supn≥0 η(f ′−1n , g−1n )} < δ. This im-
plies that d1((h−1◦ fn◦h)(x), gn(x)) < δ and d1((h−1◦f−1n ◦h)(x), g−1n (x)) < δ
for all x ∈ X, n ∈ N. Thus, d1(fn(h(x)), (h ◦ gn ◦ h−1)(h(x))) < δ′ and
d1(f−1n (h(x)), (h ◦ gn ◦ h−1)−1(h(x))) < δ′ for all x ∈ X, n ∈ N, which im-
plies d1(fn(h(x)), g′n(h(x))) < δ′ and d1(f−1n (h(x)), g′−1n (h(x))) < δ′ for all
x ∈ X, n ∈ N, where g′n = h ◦ gn ◦ h−1 for all n ∈ N. If G′ = {g′n}n∈N,
then by the persistence of µ with respect to F , for each x ∈ B there ex-
ists y ∈ X such that d(Fn(y), G′n(x)) < ε′ for all n ∈ Z which implies that
d(h−1(Fn(y)), h−1(G′n(x))) < ε for all n ∈ Z. From this we have that

d(F ′n(h−1(y)), Gn(h−1(x))) < ε

for all n ∈ Z. Since h−1∗ (µ)(X \ h−1(B)) = µ(h(X) \ B) = 0, therefore we
conclude that h−1∗ (µ) is persistent with respect to F ′. �
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The following definition extends the autonomous notion of topological sta-
bility for Borel measures to non-autonomous systems.

Definition 4.5. Let F = {fn}n∈N be a time varying bi-measurable map on
X. Then, a Borel measure µ is said to be topologically stable with respect to
F if for every ε > 0 there exists 0 < δ < 1 such that if G = {gn}n∈N is another
time varying bi-measurable map on X with p(F,G) < δ, then there exists an
upper semi-continuous compact valued map H : X → P(X) with measurable
domain satisfying the following conditions.

(i) µ(X \Dom(H)) = 0,
(ii) µ ◦H = 0,
(iii) d(H, Id) < ε,
(iv) Fn(H(x)) ⊂ B[Gn(x), ε] for all n ∈ Z.

Theorem 4.6. Let F = {fn}n∈N be a time varying bi-measurable map on X. If
F is topologically stable, then every non-atomic Borel measure µ is topologically
stable with respect to F .

Proof. Fix 0 < ε < 1 and let 0 < δ < 1 be given for ε by the topological
stability of F . Let G = {gn}n∈N be another time varying bi-measurable map
such that p(F,G) < δ. By topological stability of F , there exists a continuous
map h : X → X such that d(h(x), x) < ε and d(Fn(h(x)), Gn(x)) ≤ ε for
all n ∈ Z. Define the compact valued map H : X → P(X) by H(x) =
{h(x)} for all x ∈ X. H is upper semi-continuous because of continuity of
h. Since Dom(H) = X, µ(X \ Dom(H)) = 0 and since µ is non-atomic,
µ ◦ H = 0. Further, d(H(x), x) = d(h(x), x) < ε which gives d(H, Id) < ε.
Finally, Fn(H(x)) = Fn(h(x)) ⊂ B[Gn(x), ε] for all n ∈ Z. This completes our
proof. �

The following corollary of the above result can be verified using Theorem
2.1.

Corollary 4.7. Every complete separable metric space supporting topologi-
cally stable bi-measurable map without supporting topologically stable measure
is countable.

Theorem 4.8. Let F = {fn}n∈N be a time varying bi-measurable map on X
and h : X → X be a uniform equivalence. If µ is topologically stable with
respect to F , then h−1∗ (µ) is topologically stable with respect to F ′ = {f ′n}n∈N,
where f ′n = h−1 ◦ fn ◦ h for all n ∈ N.

Proof. Fix 0 < ε < 1. Then, there exists 0 < ε′ < ε such that d1(a, b) < ε′

implies d1(h−1(a), h−1(b)) < ε. Let 0 < δ′ < 1 and a measurable set B ⊂ X
with µ(X \ B) = 0 be given for ε′ by the persistence of µ with respect to F .
Again, there exists 0 < δ < 1 such that d1(a, b) < δ implies d1(h(a), h(b)) < δ′.

Suppose G = {gn}n∈N is another time varying bi-measurable map such that
p(F ′, G) < δ, i.e., max{supn≥0 η(f ′n, gn), supn≥0 η(f ′−1n , g−1n )} < δ. This im-
plies that d1((h−1◦ fn◦h)(x), gn(x)) < δ and d1((h−1◦f−1n ◦h)(x), g−1n (x)) < δ
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for all x ∈ X, n ∈ N. Thus, d1(fn(h(x)), (h ◦ gn ◦ h−1)(h(x))) < δ′ and
d1(f−1n (h(x)), (h ◦ gn ◦ h−1)−1(h(x))) < δ′ for all x ∈ X, n ∈ N, which im-
plies d1(fn(h(x)), g′n(h(x))) < δ′ and d1(f−1n (h(x)), g′−1n (h(x))) < δ′ for all
x ∈ X, n ∈ N, where g′n = h ◦ gn ◦ h−1 for all n ∈ N. If G′ = {g′n}n∈N, then
by topological stability of µ with respect to F , there exists an upper semi-
continuous compact valued map H : X → P(X) with measurable domain sat-
isfying µ(X \Dom(H)) = 0, µ◦H = 0, d(H, Id) < ε′, Fn(H(x)) ⊂ B[G′n(x), ε′]
for all n ∈ Z.

Then, K = h−1 ◦H ◦ h is an upper semi-continuous compact valued map of
X with measurable domain such that

(i) h−1∗ (µ)(X \Dom(K)) = µ(h(X \Dom(K))) = µ(X \ h(Dom(K))) =
µ(X \Dom(H)) = 0.

(ii) h−1∗ (µ)(K(x)) = µ(h(K(x))) = µ(H(h(x))) = 0 (since µ ◦ H = 0).
Thus, h−1∗ (µ) ◦K = 0.

(iii) d(H, Id) < ε′ implies that d((h ◦ K ◦ h−1)(x), x) < ε′ for all x ∈ X.
Then, we get that d(K(h−1(x)), h−1(x)) < ε for all x ∈ X and thus,
d(K, Id) < ε.

(iv) For each n ∈ Z, we have F ′n(K(x)) = (h−1 ◦ Fn ◦ h)(K(x)) = (h−1 ◦
Fn)(H(h(x))) ⊂ h−1(B[(h◦Gn◦h−1)(h(x)), ε′]) = h−1(B[h(Gn(x)), ε′])
⊂ B[Gn(x), ε].

Thus, we conclude that h−1∗ (µ) is topologically stable with respect to F ′. �

Theorem 4.9. Every topologically stable measure of an expansive time varying
bi-measurable map is non-atomic (hence, expansive).

Proof. Let µ be a topologically stable measure with respect to an expansive
time varying bi-measurable map F = {fn}n∈N on X. Let 0 < ε < 1 be
an expansive constant for F and 0 < δ < 1, a measurable set B ⊂ X with
µ(X \ B) = 0 be given for ε by the topological stability of µ. Taking G = F
in the definition of topological stability of µ, we get an upper semi-continuous
compact valued map H : X → P(X) with measurable domain such that µ(X \
Dom(H)) = 0, µ ◦ H = 0, d(H, Id) < ε and Fn(H(x)) ⊂ B[Fn(x), ε] for
all n ∈ Z. If x ∈ Dom(H), then there exists y ∈ H(x). Thus, Fn(y) ∈
B[Fn(x), ε] for all n ∈ Z and hence d(Fn(x), Fn(y)) ≤ ε for all n ∈ Z. Since
ε is an expansive constant, we must have x = y. Therefore, H(x) = {x}
for all x ∈ Dom(H). If possible, suppose that z is an atom for µ. Since
µ(X\Dom(H)) = 0, z ∈ Dom(H). Thus, H(z) = {z} and hence, µ(H(z)) = 0.
This is a contradiction. �

Theorem 4.10. Every topologically stable measure with respect to a time vary-
ing bi-measurable map is persistent.

Proof. Fix 0 < ε < 1 and let 0 < δ < 1 be given for ε by the topological stability
of µ with respect to a time varying bi-measurable map F = {fn}n∈N. Let G =
{gn}n∈N be another time varying bi-measurable map such that p(F,G) < δ.
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By topological stability of µ there exists upper semi-continuous compact valued
map H : X → P(X) with measurable domain such that µ(X \Dom(H)) = 0 =
µ ◦H, d(H, Id) < ε and Fn(H(x)) ⊂ B[Gn(x), ε] for all n ∈ Z. It then follows
that there exists y ∈ H(x) for all x ∈ Dom(H). Therefore, Fn(y) ∈ B[Gn(x), ε]
for all n ∈ Z which implies d(Fn(y), Gn(x)) ≤ ε for all n ∈ Z. This completes
our proof. �

We now prove Theorem 4.1 which provides sufficient condition for persistent
measure to be topologically stable.

Proof of Theorem 4.1. Let µ be expansive and persistent with respect to F .
Let e be an expansive constant for µ. Take 0 < ε < 1 and 0 < ε′ <min( e2 , ε).
Let 0 < δ < 1 and B ⊂ X with µ(X \B) = 0 be given for ε′ by the persistence
of µ. Let G = {gn}n∈N be another time varying homeomorphism such that
p(F,G) < δ. Define the compact valued map H : X → P(X) given by H(x) =⋂
n∈Z F

−1
n (B[Gn(x), ε′])

First we prove that Dom(H) is measurable. Take a sequence xk ∈ Dom(H)
converging to some x ∈ X. Since xk ∈ Dom(H), we can choose a sequence
yk ∈ X such that d(Fn(yk), Gn(xk)) ≤ ε′ for all k ∈ N, n ∈ Z. Thus, yk ∈
B[xk, ε

′] for all k ∈ N. Let K be a compact neighborhood of x. Since xk → x as
k →∞, there exists N ∈ N such that xk ∈ K for all k ≥ N . So, yk ∈ B[K, ε′]
for all k ≥ N . Since X is Mandelkern locally compact, B[K, ε′] is contained
in a compact set. So, there exists a subsequence of yk converging to some
point y in X. Therefore, d(Fn(y), Gn(x)) ≤ ε′ for all n ∈ Z which implies
y ∈ H(x). This shows that x ∈ Dom(H) which means Dom(H) is closed and
hence, measurable.

We now prove that µ(X \ Dom(H)) = 0. By the persistence of µ, for
each x ∈ B there exists y ∈ X such that d(Fn(y), Gn(x)) ≤ ε′ for all n ∈ Z
which implies y ∈ H(x). This means that H(x) 6= φ for all x ∈ B and thus,
B ⊂ Dom(H). Therefore, µ(X \Dom(H)) = 0.

Afterwards, we prove that H is upper semi-continuous. Let x ∈ Dom(H)
and O be an open neighbourhood of H(x).

Define H(y) =
⋂
m≥0Hm(y), where Hm(y) =

⋂m
n=−m F

−1
n (B[Gn(y), ε′]).

Clearly, there exists m ∈ Z such that Hm(y) ⊂ O. We assert that there
exists η > 0 such that Hm(y) ⊂ O for all y ∈ X with d(x, y) < η. If not, there
exist yk converging to x and zk ∈ Hm(yk) \ O for all k ∈ N. Since yk → x,
for any compact set K containing x there exists natural number N such that
yk ∈ K for all k ≥ N . Thus for all k ≥ N , we have zk ∈ Hm(K). Since Hm(K)
is compact, we can assume that zk converges to a point, say z and observe that
z /∈ O. But zk ∈ Hm(yk) for all k ∈ N implies that d(Fn(zk), Gn(yk)) ≤ ε′ for
all k ∈ N and −m ≤ n ≤ m. Then, d(Fn(z), Gn(x)) ≤ ε′ for −m ≤ n ≤ m.
So, z ∈ Hm(x) ⊂ O. This leads to a contradiction. Hence, H is upper semi-
continuous.

Now we prove µ ◦ H = 0. Take x ∈ X and y ∈ H(x). If z ∈ H(x), then
we have d(Fn(z), Gn(x)) ≤ ε′ for every n ∈ Z. Since y ∈ H(x), we have



TOPOLOGICALLY STABLE MEASURES IN NON-AUTONOMOUS SYSTEMS 299

d(Fn(y), Gn(x)) ≤ ε′ for every n ∈ Z. Therefore, d(Fn(y), Fn(z)) ≤ 2ε′ for
all n ∈ Z. Since 2ε′ < e, we conclude that z ∈ Γe(y) which implies that
H(x) ⊂ Γe(y). Since e is an expansive constant of µ, µ(H(x)) ≤ µ(Γe(y)) = 0.
This proves µ ◦H = 0.

It follows from the definition of H that H(x) ⊂ B[x, ε′]. Since ε′ < ε, we
also have d(H, Id) ≤ ε.

Finally, from the definition of H(x) it is clear that Fn(H(x)) ⊂ B[Gn(x), ε]
for all n ∈ Z. �

Definition 4.11. Let F = {fn}n∈N be a time varying bi-measurable map
on X. Then, a sequence {xn}n∈Z is said to be a δ-pseudo orbit for F if
d(fn+1(xn), xn+1) < δ for all n ≥ 0 and d(f−1−n(xn+1), xn) < δ for all n ≤ −1.
A sequence {xn}n∈Z is said to be ε-shadowed if there exists some point y in
X such that d(Fn(y), xn) < ε for all n ∈ Z. A sequence {xn}n∈N is said to be
through B ⊂ X if x0 ∈ B. A measure µ is said to have shadowing with respect
to F if for every ε > 0 there exists δ > 0 and a measurable set B ⊂ X with
µ(X \B) = 0 such that every δ-pseudo orbit through B is ε-shadowed by some
point in X. If B = X, then we say that F has shadowing [9].

Remark 4.12. If µ has shadowing with respect to F , then it is persistent with
respect to F . Indeed, fix 0 < ε < 1 and let 0 < δ < 1 and a measurable set
B ⊂ X with µ(X \B) = 0 be given for ε > 0 by the shadowing of µ with respect
to F . Let G = {gn}n∈N be another time varying bi-measurable map such
that p(F,G) < δ. Then for any x ∈ B, we have η(fn+1(Gn(x)), Gn+1(x)) =
η(fn+1(Gn(x)), gn+1(Gn(x))) < δ for all n ≥ 0 and η(f−1−n(Gn+1(x)), Gn(x)) =

η(f−1−n(Gn+1(x)), f−1−n(Gn+1(x))) < δ for all n ≤ −1.
By looking at the construction of η, one can conclude that {Gn(x)}n∈N is a

δ-pseudo orbit of F through B.
So by the shadowing of µ, there exists y ∈ X such that d(Fn(y), Gn(x)) < ε

for all n ∈ Z. This means that µ is persistent with respect to F .

The following corollary of Theorem 4.1 is an immediate consequence of Re-
mark 4.12.

Corollary 4.13. Let F = {fn}n∈N be a time varying homeomorphism on a
Mandelkern locally compact metric space X. If µ is expansive and has shad-
owing with respect to F , then it is topologically stable with respect to F in the
class of all time varying homeomorphisms.
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