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ON A CLASSIFICATION OF WARPED PRODUCT

MANIFOLDS WITH GRADIENT YAMABE SOLITONS

Jin Hyuk Choi, Byung Hak Kim, and Sang Deok Lee

Abstract. In this paper, we study gradient Yamabe solitons in the

warped product manifolds and classify the warped product manifolds with
gradient Yamabe solitons. Moreover we investigate the admitness of gra-

dient Yamabe solitons and geometric structures for some model spaces.

1. Introduction

Let M be a Riemannian manifold with a Riemannian metric g. The Yamabe
soliton is a special solution to the Yamabe flow

(1)
∂

∂t
gij = −rgij

and naturally arises as the limit of dilations of singularities in the Yamabe flow,
where r is a scalar curvature of M . Such a flow was introduced by R. Hamilton
[2,3]. A Riemannian metric g or (M, g) is called a Yamabe soliton if there exist
a smooth vector field X and a constant ρ such that

(2) (r − ρ)g =
1

2
LXg.

In particular, if X = ∇h for some smooth function h, we call it the gradient
Yamabe soliton [1]. The function h above is called the potential function. In
this case, the equation (2) can be rewritten as

(3) (r − ρ)g = ∇2h,

where ρ is a constant. In this case, we will call M a gradient Yamabe soliton
with (h, ρ). For ρ = 0 the Yamabe soliton is steady, for ρ > 0, it is shrinking
and ρ < 0 expanding. When h is constant, we call the corresponding Yamabe
soliton a trivial Yamabe soliton. In this case the scalar curvature r is a constant
ρ.
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It has been known [5] that every compact Yamabe soliton has a constant
scalar curvature, hence trivial. But the non-compact case is unsettled until
now. For the complete non-compact case, P. Daskalopoulos and N. Sesum [2]
showed that under the certain conditions on the initial data, which in par-
ticular imply that the initial metric admits the asymptotic behavior of the
cylindrical metric at infinity complete non-compact solutions to the Yamabe
flow develop a finite time singularity and after re-scaling the metric converges to
the Barenblatt solution. Moreover, the known classification theorems of Yam-
abe solitons are very few and the underlying space is somewhat special such as
conformal flatness [2]. Motivated by these results, it is natural to investigate
the classification of the Riemannian manifolds with gradient Yamabe solitons,
in particular, including the non-compact case. From this point of view, we
study the warped product spaces with gradient Yamabe solitons and construct
model spaces satisfying some geometric conditions using our results.

2. Gradient Yamabe solitons of the Riemannian product manifolds

Let (B, g) be an n-dimensional Riemannian manifold and (F, ḡ) be a p-
dimensional Riemannian manifold. For a local coordinate system (xa) (a =
1, 2, . . . , n) of B, the metric tensor g has components (gab) and ḡ on F has the
components (ḡαβ) for a local coordinate system (yα) (α = 1, 2, . . . , p). Then
the product manifold M of B and F is an m(= n+p)-dimensional Riemannian

manifold with a Riemannian metric G with the components (Gij) =
(
gab 0
0 ḡαβ

)
with respect to the local coordinate system xi = (xa, yα) on M and i, j, k, . . . =
1, . . . , n, n+ 1, . . . , n+ p.

If the product manifold M = B×F is a gradient Yamabe soliton with (h̃, ρ̃),
then

(4)

(r̃ − ρ̃)gab = ∇a∇bh̃,

∂ah̃α = 0,

(r̃ − ρ̃)ḡαβ = ∇̄α∇̄βh̃,

where ρ̃ is a constant and h̃ = h̃(x1, . . . , xn, y1, . . . , yp) is a smooth function on

M . Since ∂ah̃α = 0, the function h̃ can be represented by

h̃(x1, . . . , xn, y1, . . . , yp) = k(x1, . . . , xn) + l(y1, . . . , yp)

for some functions k on B and l on F respectively. Then, using this fact and
the first equation of (4), we get (r + r̄ − ρ̃)g = ∇∇k, from which we obtain

r̄ = ρ̃− r + 4k
n . Since the left hand side is depending only on F and the right

hand side is depending only on B, we see that r̄ is a constant and that F is a
trivial gradient Yamabe soliton. By the similar argument, r becomes constant.
Since r̃ = r + r̄, M becomes a trivial gradient Yamabe soliton. Thus we have:

Theorem 2.1. If the product manifold M = B × F is a gradient Yamabe
soliton, then B, F and M become trivial gradient Yamabe solitons. This means
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that there is no non-trivial gradient Yamabe soliton in the Riemannian product
manifold.

If the two Riemannian manifolds B and F are trivial gradient Yamabe soli-
tons, then the product manifold M = B×F becomes a trivial gradient Yamabe
soliton because r̃ = r + r̄.

3. Gradient Yamabe solitons of warped product manifolds

Let the warped product manifold M = R×f F be a gradient Yamabe soliton

with (h̃, ρ̃). Then we get

(5)

r̃ − ρ̃ = h̃11,

∂1h̃α =
f1

f
h̃α,

(r̃ − ρ̃)f2ḡαβ = ∇̄αh̃β + ff1h̃1ḡαβ ,

r̃ =
r̄

f2
− 2m

4f
f
− m(m− 1)

f2
||f1||2,

where h̃ = h̃(t, y1, . . . , yp) is the potential function, ρ̃ is a constant and f1 = df
dt ,

h̃1 = ∂h̃
∂t , h̃11 = ∂2h̃

∂t2 . Then we can state:

Theorem 3.1. If the warped product M = R×f F is a gradient Yamabe soliton

with (h̃, ρ̃), then we have the followings:

(a) If h̃α 6= 0 for some α = 1, . . . , p, then f2f11 = constant. So the warping

function f becomes f = −( 9
2 )

1
3 c

1
3 t

2
3 . In this case, F can not admit a

trivial gradient Yamabe soliton, where f11 = ∂2f
∂t2 .

(b) If h̃1 = 0, then M and F become trivial gradient Yamabe solitons. In
this case, M is either a Riemannian product of R and F or the potential
function h̃ is constant.

(c) If h̃α = 0 for all α = 1, . . . , p and M is a non-trivial gradient Yamabe

soliton, then F is a trivial gradient Yamabe soliton. Moreover f and h̃
are related by f = λh̃1 for some non-zero λ.

Proof. (a) Suppose that h̃α 6= 0 for some α. Then, from the second rela-

tion of (5), we obtain ∂1h̃α
h̃α

= f1
f . So we get ln h̃α − ln f = A(y1, . . . , yp),

that is, h̃α = feA(y1,...,yp) = fB(y1, . . . , yp), where we have put eA(y1,...,yp) =

B(y1, . . . , yp). Then we can see that h̃ is of the form h̃ = f(C(y1, . . . , yp) +
D(t, y1, . . . , ŷα, . . . , yp)), where f(ŷα) means that f is not a function of yα.

Hence h̃1 = f1(C + D) + fD1 and h̃11 = f11(C + D) + 2f1D1 + fD11. From
the first and fourth equations of (5), we have

(6) f11(C +D) + 2f1D1 + fD11 =
r̄

f2
− 2n

f
f11 −

n(n− 1)

f2
||f1||2 − ρ̃.
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If we differentiate both sides of (6) by yα, then we get

(7) f11
∂C

∂yα
=

1

f2

∂r̄

∂yα

that is, f2f11
∂C
∂yα

= ∂r̄
∂yα

. Hence we get d
dt (f

2f11) ∂C∂yα = 0. Therefore f2f11 =

constant or ∂C
∂yα

= 0. From the facts that h̃α 6= 0 for some α and h̃ = f(C+D),

the case ∂C
∂yα

= 0 does not occur. Thus we have f2f11 = d = constant and

we see that the general solution of the ordinary differential equation f2f11 =
d is given by f = −( 9

2 )
1
3 d

1
3 t

2
3 . Since f is a warping function, the constant d

is not equal to zero. From the equation (7) and h̃ = f(C + D), we see that
∂r̄
∂yα

= d ∂C∂yα does not vanish, that is F is not a trivial gradient Yamabe soliton.

(b) If h̃1 = 0, then we see that M becomes a trivial gradient Yamabe soliton
from the first equation of (5). From this fact and the fourth equation of (5),
we can also see that r̄ is constant, that is, F is a trivial gradient Yamabe
soliton. Moreover, we see that f1h̃α = 0 from the second equation of (5). This

means that M is either a Riemannian products or the potential function h̃ is
a constant.

(c) Since h̃α = 0 for all α, h̃ is only a function of t. Then, from the third
and fourth equations of (5), we get

(8) r̄ = ff1h̃1 + 2mf(4f) +m(m− 1)||f1||2 + ρ̃f2.

If we differentiate the both sides of (8) with respect to yα, then we have ∂αr̄ = 0
for all α, which means that r̄ is constant. From the first and third equations
of (5), f1h̃1 = h̃11f . Since M̃ is a non-trivial gradient Yamabe soliton by (b)

h̃1 6= 0. Hence we obtain f1
f = h̃11

h̃1
, from which we have f = λh̃1 for some

non-zero constant λ. �

Theorem 3.2. Let M = R ×et F be a gradient Yamabe soliton. Then M is
a trivial shrinking gradient Yamabe soliton with a constant potential function
and the scalar curvature of F is equal to zero.

Proof. Since et is not a solution of the equation f2f11= constant, we see that
h̃α = 0 for all α from Theorem 3.1(b) and that r̄ becomes constant by use of

Theorem 3.1(a). From these facts and equation (5), we obtain h̃11 = r̃− ρ̃ = h̃1

and that h̃ is given by h̃ = λet + µ for some constants λ and µ. Hence we get
r̃ = ρ̃ + λet and r̄ = e2t(ρ̃ + λet + p2 + p). Consequently we see that λ = 0,

ρ̃+ p2 + p = 0 and finally r̄ = 0 and r̃ = ρ̃ = −p2 − p. Hence we see that h̃ is
constant, ρ̃ is negative constant and r̄ = 0.

It is known [5] that in a compact Riemannian manifold with a gradient
Yamabe soliton, the scalar curvature becomes constant. From Theorem 3.2,
we can see that the warped product R×etF with a gradient Yamabe soliton has
a constant scalar curvature without topological conditions such as compactness.

Since the scalar curvature r̃ of R ×et Sn is re−2t − p2 − p for the nonzero
scalar curvature r of Sn, by Theorem 3.2, we can state:
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Corollary 3.3. The warped product manifold R×etSn can not admit a gradient
Yamabe soliton.

In [4], it is known that the warped product space R×cet F (c > 0) of the line
R and Kaehler manifold F admits an almost contact metric structure (φ, ξ, η, g)
which satisfy

(9)
∇Xφ · Y = −η(Y )φX − g(X,φ, Y )ξ,

∇Xξ = X − η(X)ξ.

From this fact and Corollary 3.3, we have:

Theorem 3.4. The warped product manifold M = R×et S2n can not admit a
gradient Yamabe soliton but admit an almost contact structure satisfying (9).

Next consider the warped product manifold M = S1(k)×f F with a gradient
Yamabe soliton. Then we have

(10)

(r̃ − ρ̃)
k2

k2 − t2
= ∂1h̃1 −

t

k2 − t2
h̃1,

∂1h̃α =
f1

f
h̃α,

(r̃ − ρ̃)f2ḡαβ = ∇̄αh̃β + ff1h̃1ḡαβ ,

r̃ =
r̄

f2
− 2m

4f
f
− p(p− 1)

f2
||f1||2,

where h̃ = h̃(t, y1, . . . , yp) is a potential function and ρ̃ is a constant.

Theorem 3.5. Let M = S1 ×f F be a gradient Yamabe soliton with (h̃, ρ̃).
Then we have the followings:

(a) If h̃α 6= 0 for some α, then the warping function f satisfies f2(f11(k2−
t2)− tf1) = ν = constant. Moreover, if the scalar curvature r̄ of F is
constant, then the warping function f becomes f = λ sin−1 t

k + µ for
some constants λ and µ.

(b) If h̃1 = 0, then M and F become trivial gradient Yamabe solitons.

(c) If h̃α = 0 for all α, then F is a trivial gradient Yamabe soliton.

Proof. (a) Assume that h̃α 6= 0 for some α. Then from the second equa-

tion of (10), we have ∂1h̃α
hα

= f1
f . So we get h̃α = feA(y1,...,yp). If we put

B(y1, . . . , yp) = eA(y1,...,yp), then h̃α = B(y1, . . . , yp) and so h̃ is of the form

h̃ = f(C(y1, . . . , yp) + D(t, y1, . . . , ŷα, . . . , yp)). Hence h̃1 = f1(C + D) + fD1

and h̃11 = f11(C +D) + 2f1D1 + fD11. From the first and fourth equation of
(10), we obtain

(11)

f11(C +D) + 2f1D1 + fD11 −
t

k2 − t2
(f1(C +D) + fD1)

= (
r̄

f2
− 2p

4f
f
− p(p− 1)

f2
||f1||2 − ρ̃)

k2

k2 − t2
.
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If we differentiate both sides of (11) by yα, then we get f11
∂C
∂yα
− t
k2−t2 f1

∂C
∂yα

=
1
f2

∂r̄
∂yα

k2

k2−t2 , that is

(12) f2f11(k2−t2)−tf2f1
k2

∂C
∂yα

= ∂r̄
∂yα

.

Hence we get d
dt (f

2f11(k2 − t2) − tf2f1) ∂C∂yα = 0. Therefore f2f11(k2 − t2) −
tf2f1 = constant or ∂C

∂yα
= 0. From the fact that h̃α 6= 0 for some α and

h̃ = f(C+D), ∂C∂yα = 0 does not occurs. Thus we have f2(f11(k2− t2)− tf1) =

constant. Moreover, if r̄ =constant, then we get

(13) f11(k2 − t2)− tf1 = 0

from the equation (12), and the differential equation (13) gives us the general
solutions f = λ sin−1 t

k +µ for some constants λ and µ. Since f is positive, we

see that λ and µ satisfy µ > |λ|
2 π. The function f = ν cos−1 t

k + ω for some
constants ν and ω is also the general solution of the equation (13) by the same
method. So we can restrict the range of f due to positive function.

(b) From the assumption h̃1 = 0, h̃ depends only on F and the first equation
of (10) gives r̃ = ρ̃, which means that M is a trivial gradient Yamabe soliton.
Then from this fact and the fourth equation of (10), we see that r̄ is constant.

(c) From the assumptions and the third equation of (10), we get r̃−ρ̃ = f1
f h̃1,

from which r̃ depends only on S1. Then, this fact and the fourth equation of

(10) give r̄
f2 − 2p4ff −

p(p−1)
f2 ||f1||2 = ρ̃+ f1

f h̃1. Hence r̄ becomes constant.

Finally, consider the warped product manifold M = B ×f F of an n-
dimensional Riemannian manifold (B, g) and a p-dimensional Riemannian man-
ifold (F, ḡ). If M is a gradient Yamabe soliton, then we have

(14)

(r̃ − ρ̃)gab = ∇ah̃b,

∂ah̃β =
fa
f
h̃β ,

(r̃ − ρ̃)f2ḡαβ = ∇̄αh̃β + ffah̃aḡαβ ,

r̃ = r +
r̄

f2
− 2p

4f
f
− p(p− 1)

f2
||fe||2,

where h̃ = ũ(x1, . . . , xn, y1, . . . , yp) is a potential function and ρ̃ is a constant.
�

Theorem 3.6. If the warped product manifold M = B ×f F is a gradient

Yamabe soliton with (h̃, ρ̃), then we have the followings:

(a) If h̃α 6= 0 for some α, then f24f is constant. In particular, if B is
compact, then M is the Riemannian product of B and F .

(b) If h̃a = 0 for all a, then M is either a Riemannian product of the

Riemannian manifolds B and F or the potential function h̃ is constant.
In any case, M and F are trivial gradient Yamabe solitons.
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(c) If h̃α = 0 for all α, then F is trivial gradient Yamabe soliton and the

potential function h̃ can be expressed by h̃ = k + l for some functions
k and l on B and F respectively. Moreover if B is compact, then the
integral of r̃ on B is equal to ρ̃ vol(B).

Proof. (a) Assume that h̃α 6= 0 for some α. Then we get ∂ah̃α
h̃α

= fa
f from the

second equation of (14), that is ∂a(ln h̃α − ln f) = 0. So we get h̃α = feA(y)

for some A(y) = A(y1, . . . , yp). We denote eA(y1,...,yp) = B(y), then h̃α =

fB(y). Hence we obtain h̃ = f(C + D) for some C = C(y1, . . . , yp), D =

D(x1, . . . , xn, y1, . . . , ŷα, . . . , yp) and then h̃a = faC + faD + fDa. From the
first equation of (14),

(15) r̃ = ρ̃+ gab(∇ah̃b)

and if we differentiate (15) with respect to yα, then we get 4f ∂C
∂yα

= 1
f2

∂r̄
∂yα

,

that is

(16) f24f ∂C
∂yα

= ∂r̄
∂yα

.

If we differentiate (16) by xa, then we see that ∂
∂xa

(f24f) ∂C∂yα = 0. So we see

that f24f is constant or ∂C
∂yα

= 0. Since h̃α = f ∂C
∂yα

, ∂C
∂yα

= 0 does not occur

because h̃α 6= 0 for some α on F . Consequently f24f is constant. Since4f3 =
6f ||df ||2 + 3f24f , by Green’s Theorem,

∫
B
f24fdv = −2

∫
B
f ||df ||2dv ≤ 0 on

the compact manifold of B. Then we see that the constant f24f is non-
positive, and hence 4f ≤ 0 on B. Consequently f is constant.

(b) From the first equation of (14) and the assumptions, it is easily verified
that r̃ = ρ̃, that is M is a trivial gradient Yamabe soliton. Since r̄ = f2ρ̃ −
f2r + 2p(f4f) + p(p− 1)||fe||2 and the right hand side of the upper equation

depends only on B, r̄ is constant. Since fa and h̃α are functions depending
only on B and F respectively, the warping function f and potential function h̃
become constants.

(c) Assume that h̃α = 0 for all α. Then there exist a function k on B and a

function l on F such that h̃ = k+l because ∂α∂ah̃ = 0 from the second equation
of (14). So we obtain r̃ = ρ̃+ 1

n4k = ρ̃+ fa
f ka from the first and third equation

of (14). Moreover we see that r̃ is a quantity of B and r̄ is constant because
r̄ = f2r̃− f2r+ 2pf4f + p(p− 1)||fe||2 is satisfied from the fourth equation of

(14). Since r̃ = ρ̃+ 4k
n , if B is compact, then we get

∫
B
r̃dv = ρ̃vol(B). Hence

the integral of r̃ on B is zero or positive or negative if the soliton is steady or
shrinking or expending respectively. From the third equation of (14), then we

obtain r̃ = fa
f ka + ρ̃ and that

(17) r̄ = −f2r + f2( f
aka
f + ρ̃) + 2pf4f + p(p− 1)||fe||2

is satisfied. Then we easily see that r̄ is constant because the right hand side
of the equation (17) depends only on B. �
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Remark 3.7. If we combine the results of Theorem 3.5(a) and Theorem 3.6(a),
then we see that the constant ν in Theorem 3.5(a) is equal to zero.

If we combine the results of Theorem 3.5 and Theorem 3.6(c), we get:

Corollary 3.8. The integral of scalar curvature r̃ on M = S1×f F is equal to
ρ̃vol(S1) if the warped product manifold M is a gradient Yamabe soliton with

(h̃, ρ̃) and h̃α = 0 for all α.
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