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Abstract. Hardy and Littlewood found a relation between the smooth-

ness of the radial limit of an analytic function on the unit disk D ⊂ C
and the growth of its derivative. It is reasonable to expect an analytic

function to be smooth on the boundary if its derivative grows slowly,
and conversely. Gehring and Martio showed this principle for uniform

domains in R2. Astala and Gehring proved quasiconformal analogue of

this principle for uniform domains in Rn. We consider α-quasihyperbolic
metric, kαD and we extend it to proper domains in Rn.

1. Introduction

A proper subdomain D ⊂ R2 is said to have Hardy-Littlewood property if
there is a constant c such that for 0 < α ≤ 1, f is in Lipα(D) with ||f ||α ≤ cm/α
whenever f is analytic with

(1.1) |f ′(z)| ≤ md(z, ∂D)α−1

in D [3].
Hardy and Littlewood first considered analytic functions on the unit disk in

C and showed that the radial limit F (θ) = f(eiθ) is in Lipα if and only if (1.1)
hold [2, Theorem 5.1], [5, Theorem 40].

Theorem 1.1 (Hardy-Littlewood). Let f(z) be a function analytic in |z| < 1.
Then f(z) is continuous in |z| ≤ 1 and f(eiθ) ∈ Lipα (0 < α ≤ 1) if and only
if

|f ′(z)| ≤ m(1− |z|)α−1.
It is reasonable to expect an analytic function to be smooth on the boundary

if its derivative grows slowly, and conversely. Gehring and Martio showed this
principle for uniform domains in R2 which include the quasidisk, the image of
disk under a quasiconformal map of the extended complex plane [3, Corollary
2.2].
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Theorem 1.2. If D is uniform and f is analytic and satisfies

|f ′(z)| ≤ md(z, ∂D)α−1

in D, then f is Lipα(D) with

||f ||α ≤
cm

α
,

where c is a constant which depends only on α and the constants for D.

Astala and Ghering introduced the notion of average derivative af (x) of
quasiconformal map f and proved quasiconformal analogue of Theorem 1.2
for uniform domains in Rn [1, Theorem 1.9]. They also proved its converse
[1, Theorem 3.17].

Theorem 1.3. Suppose that D is a uniform domain in Rn and that α and m
are constants with 0 < α ≤ 1 and m ≥ 0. If f is K-quasiconformal in D with
f(D) ⊂ Rn and if

(1.2) af (x) ≤ md(x, ∂D)α−1

for x ∈ D, then f has a continuous extension to D \ {∞} and

(1.3) |f(x1)− f(x2)| ≤ cm (|x1 − x2|+ d(x1, ∂D))
α

for x1, x2 ∈ D \{∞}, where c is a constant which depends only on K, n, α and
the constants for D.

We consider α-quasihyperbolic metric, kαD and we extend Theorem 1.3 to
proper domains in Rn for α ≤ 1. If D is not uniform, then there is an f that
can not have a continuous extension to D \ {∞} even though f satisfies the
hypothesis of Theorem 1.3.

Remark 1.4. Let D = {z : 1 < |z| < 2} \ {z| arg z = π}, then D is not a
uniform domain but an inner uniform domain in C. The function f(z) = log z
is analytic on D and af (z) = |f ′(z)| is bounded on D. But f can not have

continuous extension to D \ {∞}.

Theorem 1.5. Suppose that D, D′ are proper subdomains of Rn and that
f : D → D′ is K-quasiconformal in D. Suppose that α and m are constants
with α ≤ 1 and m ≥ 0. Then

(1.4) af (x) ≤ md(x, ∂D)α−1

for x ∈ D if and only if

(1.5) |f(x1)− f(x2)| ≤ cm(kαD(x1, x2) + d(x1, ∂D)α)

for x1, x2 ∈ D, where c is a constant which depends only on K,n, α.

If D is an inner uniform domain, Kim showed that kD is comparable to j′D
[7, Theorem 2.1] and Langmeyer showed that kαD is comparable to d(x1, ∂D)α

for α < 0 [10, Theorem 6.5]. Theorem 1.5 can be rephrased in the following
form.
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Theorem 1.6. Suppose that D, D′ are proper subdomains of Rn and that
f : D → D′ is K-quasiconformal in D. Suppose that D is an inner uniform
domain in Rn and that α and m are constants with α ≤ 1 and m ≥ 0. Then

af (x) ≤ md(x, ∂D)α−1

for x ∈ D if and only if the following inequality holds. For x1, x2 ∈ D,

|f(x1)− f(x2)| ≤ cm (λD(x1, x2) + d(x1, ∂D))
α

(0 < α ≤ 1),(1.6)

|f(x1)− f(x2)| ≤ cm (j′D(x1x2) + 1) (α = 0),(1.7)

|f(x1)− f(x2)| ≤ cmd(x1, ∂D)α (α < 0).(1.8)

Here c is a constant which depends only on K, n, α and the constants for D.

2. Preliminaries

We shall assume throughout this paper that D, D′ are proper subdomains
of Rn, n ≥ 2 and that d(A,B) denotes the euclidean distance from A to B.

We say that D is uniform if there exist constants a and b such that each pair
of points x1, x2 in D can be joined by a rectifiable arc γ ⊂ D for which

(2.1)

{
`(γ) ≤ a|x1 − x2|,
min `(γ(xj , x)) ≤ bd(x, ∂D)

for all x ∈ γ. Here `(γ) denotes the euclidean length of γ, γ(xj , x) the part of
γ between xj and x.

For each x1, x2 ∈ D we set λD(x1, x2) = inf `(γ) where infimum is taken
over all rectifiable arcs γ joining x1 and x2 in D. We call λD the inner length
metric in D. We say that D is an inner uniform if (2.1) holds when we replace
euclidean distance |x1 − x2| by λD(x1, x2), i.e., `(γ) ≤ aλD(x1, x2). We also

use a metric j′D(x1, x2) = 1
2 log(1 + λD(x1,x2)

minj=1,2 d(xj ,∂D) ).

For each x1, x2 ∈ D we set

kαD(x1, x2) = inf
γ

∫
γ

d(x, ∂D)α−1ds,

where the infimum is taken over all rectifiable arcs γ joining x1 and x2 in D. We
call kαD the α-quasihyperbolic metric in D. When α = 0, we have k0D = kD, the
usual quasihyperbolic metric. If kαD(x1, x2) =

∫
γ
d(x, ∂D)α−1ds, then we call γ

the α-quasihyperbolic geodesic. The existence of α-quasihyperbolic geodesic in
D is proved in [4, Lemma 1] for α = 0, in [9, Lemma 2.2] for α < 0. The same
argument in [9, Lemma 2.2] shows the existence for 0 < α < 1.

Suppose that f : D → D′ is K-quasiconformal in D with Jacobian Jf . Then
log Jf is integrable over each ball B ⊂ D. Astala and Gehring introduced
average derivative af in [1]

af (x) = exp

(
1

n|Bx|

∫
Bx

log Jfdm

)
,



246 K. W. KIM AND J. S. RYU

where Bx = B(x, d(x, ∂D)/2) and |Bx| is the n-dimensional measure of Bx.
Using af , they proved following quasiconformal analogue of Koebe distortion
theorem [1, Theorem 1.8].

Lemma 2.1. Let f : D → D′ be K-quasiconformal. There exists a positive
constant c depending only on n, K, so that for each x ∈ D

1

c
d(f(x), ∂D′) ≤ af (x)d(x, ∂D) ≤ cd(f(x), ∂D′).

The following is the basic property of quasiconformal mapping [8, Lemma
2.2]. (See also [12, 18.1].)

Lemma 2.2. Let f : D → D′ be K-quasiconformal. Then for any 0 < λ < 1
there exist positive constants c1, c2 depending only on n, K, λ such that

Bn(f(x), c1d
′) ⊂ f(Bn(x, c2d) ⊂ Bn(f(x), λd′),

where d = d(x, ∂D) and d′ = d(f(x), ∂D′). Moreover, there is a constants c3
depending only on n, K such that

Bn(f(x), d′/c3) ⊂ f(Bx) ⊂ Bn(f(x), c3d
′),

and

d(f(Bx), ∂D′) ≥ d′/c3.

Using Lemmas 2.1 and 2.2, Koskela showed the following [8, Lemma 2.6].

Lemma 2.3. Let f : D → D′ be K-quasiconformal. If γ ⊂ D is a rectifiable
curve with `(γ) ≥ d(γ, ∂D), then

diam(fγ) ≤ c
∫
γ

af (x)ds,

where c is a constant which depends only on n,K.

A homeomorphism f : D → D′ is called η-quasisymmetric if there is a
homeomorphism η : [0,∞)→ [0,∞) so that

|x− a| ≤ t|x− b| implies |f(x)− f(a)| ≤ η(t)|f(x)− f(b)|

for each t > 0 and for each triple x, a, b of points in D. The connection between
quasiconformality and quasisymmetry has been studied by many authors in
various geometric settings. We will use the following result [6, Theorem 11.14].

Lemma 2.4. A homeomorphism f : D → D′ between domains in Rn, n ≥ 2,
is K-quasiconformal if and only if there is η such that f is η-quasisymmetric in
each ball B(x, 12d(x, ∂D)) for x ∈ D. The statement is quantitative involving
K, η, and the dimension n.

We will use the following modified version of [11, Cor. 5.3].
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Lemma 2.5. If a homeomorphism f : D → D′ is η′-quasisymmetric in each
ball Bx,λ = B(x, λd(x, ∂D)) for x ∈ D with a constant 0 < λ < 1, then there
exists a homeomorphism η : [0,∞)→ [0,∞) such that

(2.2)
d(f(x), f(y))

d(f(x), ∂D′)
≤ η

(
d(x, y)

d(x, ∂D)

)
for all x ∈ D and y ∈ Bx,λ.

3. Proof of Theorems

Proof of Theorem 1.5

(1.4) =⇒ (1.5). Choose α-quasihyperbolic geodesic γ ⊂ D joining x1 and x2.
Case 1 : `(γ) ≥ d(γ, ∂D)

By Lemma 2.3

|f(x1)− f(x2)| ≤ diam(fγ) ≤ c
∫
γ

af (x)ds

≤ c
∫
γ

md(x, ∂D)α−1ds = cmkαD(x1, x2).

Case 2 : `(γ) < d(γ, ∂D)
We follow the similar arguments in the proof of Lemma 2.3. Since d(γ, ∂D) ≤

1
2d(x1, ∂D) + 1

2d(x2, ∂D), we get γ ⊂ Bx1
∪Bx2

. By Lemma 2.2, we get

|f(x1)− f(x2)| ≤
∑
i=1,2

diam(f(Bxi
)) ≤ c1

∑
i=1,2

d(f(xi), ∂D
′).

By Lemma 2.1 and (1.4)∑
i=1,2

d(f(xi), ∂D
′) ≤ c2

∑
i=1,2

d(xi, ∂D)af (xi) ≤ c2m
∑
i=1,2

d(xi, ∂D)α.

Since |x1 − x2| ≤ `(γ) < d(γ, ∂D) ≤ min(d(x1, ∂D), d(x2, ∂D)),

d(xi, ∂D) ≤ d(xj , ∂D) + |x1 − x2| ≤ d(xj , ∂D) + `(γ) ≤ 2d(xj , ∂D)

for {i, j} = {1, 2}. Thus

1

2
d(x1, ∂D) ≤ d(x2, ∂D) ≤ 2d(x1, ∂D)

and

|f(x1)− f(x2)| ≤ c3d(x1, ∂D)α.
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(1.5) =⇒ (1.4). If we consider the inverse of the homeomorphsim f in Lemma
2.4 and Lemma 2.5, then the following holds.

Lemma 3.1. If a homeomorphism f : D → D′ is η′-quasisymmetric in each
ball Bx = B(x, 12d(x, ∂D)) for x ∈ D. Then there exists a homeomorphism
η : [0,∞)→ [0,∞) such that

(3.1)
d(x, y)

d(x, ∂D)
≤ η

(
d(f(x), f(y))

d(f(x), ∂D′)

)
for all x ∈ D and y ∈ Bx.

We will use following technical Lemma.

Lemma 3.2. For any homeomorphism η : [0,∞) → [0,∞), there exist con-
stants a, t0 < 1/2 so that η(t0) ≤ 1/2 and

(3.2) η(t0) = at0.

Proof. We set b1 = min(η−1(1/2), 1/2), then η(t) ≤ 1
2 for 0 ≤ t ≤ b1. Let

m1 = η(b1)
b1

and let b0 = 1
2b1, m0 = η(b0)

b0
. If m1 = m0, then choose a = m0 and

t0 = b0. If m1 6= m0, then choose a constant a = 1
2 (m1 + m0). Then we can

find t0 < 1/2 such that the line l(t) = (t, at) and curve β(t) = (t, η(t)) intersect
at t = t0. �

Choose y such that d(f(x), f(y)) = t0d(f(x), ∂D′). By (3.1) and (3.2)

(3.3)
d(x, y)

d(x, ∂D)
≤ η(t0) = k.

Choose a line γ joining x and y. Since `(γ) = d(x, y) ≤ kd(x, ∂D) and (1 −
k)d(x, ∂D) ≤ d(γ(s), ∂D),

(3.4) kαD(x, y) ≤
∫
γ

ds

d(γ(s), ∂D)1−α
≤ k

(1− k)1−α
d(x, ∂D)α.

By (1.5) and (3.4)

t0d(f(x), ∂D′) = d(f(x), f(y))

≤ m(kαD(x, y) + d(x, ∂D)α)

≤ m2d(x, ∂D)α.

By Lemma 2.1

af (x) ≤ cd(f(x), ∂D′)

d(x, ∂D)
≤ cm2

t0
d(x, ∂D)α−1.

This completes the proof. �

Proof of Theorem 1.6

(1.4) ⇐⇒ (1.6). If x2 ∈ B(x1, d(x1, ∂D)), then d(x1, x2) = λD(x1, x2). The
proof follows if we use λD(x1, x2) instead of d(x1, x2) = |x1 − x2| in the proof
of Theorem 1.3 and Theorem 1.5.
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(1.4) ⇐⇒ (1.7). It is easy to see that

(3.5) j′D(x1x2) ≤ kD(x1, x2).

Kim showed

(3.6) kD(x1, x2) ≤ bj′D(x1x2)

for an inner uniform domain D [7, Theorem 2.1]. Therefore (1.5) and (1.7) are
equivalent if α = 0.

(1.4) ⇐⇒ (1.8). In the proof of [10, Theorem 6.5], Langmeyer showed

(3.7) kαD(x1, x2) ≤ c
(

min
j=1,2

d(xj , ∂D)

)α
for α < 0. Therefore (1.5) and (1.8) are equivalent if α < 0. �
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