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SOME RESULTS ON CONVERGENCES IN FUZZY METRIC

SPACES AND FUZZY NORMED SPACES

Kyugeun Cho and Chongsung Lee

Abstract. In this paper, we introduce the definitions of sp-convergent

sequence in fuzzy metric spaces and fuzzy normed spaces. We investi-
gate relations of convergence, sp-convergence, s∞-convergence and st-

convergence in fuzzy metric spaces and fuzzy normed spaces. We also
study sp-convergence, s∞-convergence and st-convergence using the sub-

sequence of convergent sequence in fuzzy metric spaces and fuzzy normed

spaces. Stationary fuzzy normed spaces are defined and investigated. We
finally define sp-closed sets, s∞-closed sets and st-closed sets in fuzzy

metric spaces and fuzzy normed spaces and investigate relations of them.

1. Introduction

Various definitions of fuzzy metric space have been investigated by several
authors (see [4], [6], [7] and [11]). In this paper, we take the definition of fuzzy
metric space introduced by A. George and P. Veeramani [6].

Definition 1. A fuzzy metric space is an ordered triple (X,M, ∗) such that
X is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set on
X ×X × (0,∞) satisfying the following conditions, for all x, y, z ∈ X, s, t > 0,

(M1) M(x, y, t) > 0,
(M2) M(x, y, t) = 1 if and only if x = y,
(M3) M(x, y, t) = M(y, x, t),
(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(M5) M(x, y, ) : (0,∞)→ (0, 1] is continuous.

Now we want to give a definition of fuzzy norm in order to investigate some
properties of various type convergences studied in fuzzy metric space. Indeed,
several authors introduced definitions of fuzzy normed space from different
point of view (for example, [1], [5], [12]).

We now consider the definition of fuzzy norm introduced by C. Felbin [5].
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A fuzzy number is a mapping x : R→ [0, 1] over the set R of all real numbers.
A fuzzy number x is convex if x(t) ≥ min {x(s), x(r)} where s ≤ t ≤ r. A
fuzzy number x is normal if there exists a t0 ∈ R such that x(t0) = 1. For
α ∈ (0, 1], α-level set of a fuzzy number x is [x]α = {t ∈ R : x(t) ≥ α} and
α-level set of an upper semi-continuous, convex and normal fuzzy number is a
closed interval [aα, bα], where aα = −∞ and bα = ∞ are admissible. When
aα = −∞, [aα, bα] means the interval (−∞, bα]. When bα =∞, [aα, bα] means
the interval [aα,∞). A fuzzy number x is said to be non-negative if x(t) = 0,
for all t < 0. C. Felbin [5] denoted the set of all convex, normal and upper
semi-continuous fuzzy number by R(I) and the set of all non-negative, convex,
normal and upper semi-continuous fuzzy number by R∗(I). Since each r ∈ R
can be considered a fuzzy real number r̃ defined by

r̃(t) =

{
1 if t = r,
0 if t 6= r,

R can be embedded in R(I). A partial ordering � in R(I) is defined by x � y
if and only if a1α ≤ a2α and b1α ≤ b2α for all α ∈ (0, 1], where [x]α =

[
a1α, b

1
α

]
and

[y]α =
[
a2α, b

2
α

]
. The strict inequality in R(I) is defined by x ≺ y if and only if

a1α < a2α and b1α < b2α for all α ∈ (0, 1]
Arithmetic operations ⊕, 	, � and � on R(I)×R(I) are defined as in [11]:

(x⊕ y)(t) = sup
s∈R

min {x(s), y(t− s)} , t ∈ R,

(x	 y)(t) = sup
s∈R

min {x(s), y(s− t)} , t ∈ R,

(x� y)(t) = sup
s∈R,s 6=0

min {x(s), y(t/s)} , t ∈ R,

(x� y)(t) = sup
s∈R

min {x(st), y(s)} , t ∈ R.

The following definition is found in [5].

Definition 2. Let X be a linear space over a field R. Let ‖ · ‖ : X → R and
let the mappings L, R : [0, 1] × [0, 1] → [0, 1] be symmetric, non-decreasing
in both arguments and satisfy L(0, 0) = 0 and R(1, 1) = 1. Write [‖x‖]α =[
‖x‖1α, ‖x‖2α

]
for x ∈ X, α ∈ (0, 1] and suppose for all x ∈ X, x 6= 0, there

exists α0 ∈ (0, 1] independent of x such that for all α ≤ α0,
(A) ‖x‖2α <∞,
(B) inf ‖x‖1α > 0.
The quadruple (X, ‖ · ‖, L,R) is called a fuzzy normed liner space and ‖ · ‖

a fuzzy norm, if

(i) ‖x‖ = 0̃ if and only if x = 0,
(ii) ‖rx‖ = |r|‖x‖, for all x ∈ X and r ∈ R

(iii) for all x, y ∈ X,
(a) whenever s ≤ ‖x‖11, t ≤ ‖x‖11 and s+t ≤ ‖x+y‖11, ‖x+y‖(s+t) ≥

L (‖x‖(s), ‖y‖(t)),
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(b) whenever s ≥ ‖x‖11, t ≥ ‖x‖11 and s+t ≥ ‖x+y‖11, ‖x+y‖(s+t) ≤
R (‖x‖(s), ‖y‖(t)).

C. Felbin [5] showed that if we take L as Min and R as Max, then (iii) of
Definition 2 is equivalent to ‖x+ y‖ � ‖x‖⊕ ‖y‖ and ‖ · ‖iα, i = 1, 2, are norms
on X in the usual sense. In the sequel, we take L =Min and R =Max.

Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} in (X,M, ∗) is said
to be convergent to x ∈ X if limn→∞M(xn, x, t) = 1 for all t > 0. A sequence
{xn} in (X,M, ∗) is said to be s-convergent to x ∈ X if limn→∞M

(
xn, x,

1
n

)
=

1 [8]. In [8], the authors showed that s-convergence implies convergence and
the converse does not hold. A sequence {xn} in (X,M, ∗) is said to be strong
convergent (briefly st-convergent) to x ∈ X if for all ε ∈ (0, 1), there exists
nε ∈ N, depending only on ε, such that if n ≥ nε, M(xn, x, t) > 1 − ε for all
t > 0 [9]. In [9], the authors showed that st-convergence implies s-convergence
and the converse is false, in general.

Let {xn} be a sequence in a fuzzy normed space (X, ‖ · ‖) introduced by
C. Felbin and x ∈ X. {xn} is said to be convergent to x if, for all ε > 0 and
α ∈ (0, 1], there exists nε,α ∈ N, depending on ε and α, such that ‖xn−x‖2α < ε,
for n ≥ nε,α [5]. {xn} is said to be s-convergent to x if, for all ε > 0, there
exists nε ∈ N such that ‖xn − x‖21

n

< ε for n ≥ nε [3]. {xn} is said to be

st-convergent to x if, for all ε > 0, there exists nε ∈ N such that ‖xn− x‖2α < ε
for n ≥ nε and for all α ∈ (0, 1] [3]. In [3], the authors proved the following
strict implications in fuzzy normed spaces:

st-convergence⇒ s-convergence⇒ convergence.

In Section 2, we introduce the definitions of sp-convergent sequence in fuzzy
metric spaces and fuzzy normed spaces. We investigate relations of conver-
gence, sp-convergence, s∞-convergence and st-convergence in fuzzy metric spa-
ces and fuzzy normed spaces. In Section 3, we study sp-convergence, s∞-
convergence and st-convergence using the subsequence of convergent sequence
in fuzzy metric spaces and fuzzy normed spaces. Stationary fuzzy normed
spaces are defined and investigated in Section 4. We finally define sp-closed
sets, s∞-closed sets and st-closed sets in fuzzy metric spaces and fuzzy normed
spaces and investigate relations of them.

2. st-convergent sequence and sp-convergent sequence

The following proposition is found in [9].

Proposition 2.1. Let (X,M, ∗) be a fuzzy metric space. Then a sequence (xn)
in (X,M, ∗) is st-convergent to x0 if and only if limn,m→∞M(xn, x0,

1
m ) = 1.

We can get the similar result on fuzzy normed spaces.

Proposition 2.2. Let (X, ‖ · ‖) be a fuzzy normed space introduced by C.
Felbin. Then a sequence (xn) in (X, ‖ · ‖) is st-convergent to x0 if and only if
limn,m→∞ ‖xn − x0‖21

m

= 0.
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Proof. Suppose that (xn) is an st-convergent sequence to x0 in (X, ‖ · ‖). Let
ε > 0. Then there exists nε ∈ N such that if n ≥ nε,

‖xn − x0‖2α < ε for all α ∈ (0, 1].

In particular, ‖xn−x0‖21
m

< ε for n ≥ nε and for allm ∈ N, i.e., limn,m→∞ ‖xn−
x0‖21

m

= 0.

Conversely, suppose that limn,m→∞ ‖xn − x0‖21
m

= 0. Let ε > 0. Then

there exists nε ∈ N such that if n,m ≥ nε, ‖xn − x0‖21
m

< ε. Let α ∈ (0, 1].

Then there exists mα ∈ N such that mα ≥ nε and 1
mα

< α. For n ≥ nε,

‖xn − x0‖2α ≤ ‖xn − x0‖2 1
mα

< ε. This means that (xn) is st-convergent to

x0. �

We now introduce the following definitions.

Definition 3. Let (X,M, ∗) be a fuzzy metric space and (X, ‖ · ‖) a fuzzy
normed space introduced by C. Felbin.

(1) A sequence (xn) in a fuzzy metric space (X,M, ∗) is said to be sp-
convergent to x0, for p ∈ N if limn→∞M

(
xn, x0,

1
np

)
= 1. A sequence

(xn) in a fuzzy metric space (X,M, ∗) is said to be s∞-convergent to
x0 if (xn) is sp-convergent to x0, for all p ∈ N.

(2) A sequence (xn) in a fuzzy normed space (X, ‖ · ‖) is said to be sp-

convergent to x0, for p ∈ N if limn→∞ ‖xn − x0‖21
np

= 0. A sequence

(xn) in (X, ‖·‖) is said to be s∞-convergent to x0 if (xn) is sp-convergent
to x0, for all p ∈ N.

We note that s1-convergence coincides to s-convergence in fuzzy metric
spaces(or fuzzy normed spaces).

Proposition 2.3. Let (X,M, ∗) be a fuzzy metric space and (X, ‖ · ‖) a fuzzy
normed space introduced by C. Felbin. Then

(1) sk+1-convergence implies sk-convergence in fuzzy metric spaces
(or fuzzy normed spaces), for k ∈ N,

(2) st-convergence implies s∞-convergence in fuzzy metric spaces (or fuzzy
normed spaces).

Proof. (1) Let (xn) be a sequence which is sk+1-convergent to x0 ∈ X in fuzzy
metric space (X,M, ∗) . Then limn→∞M

(
xn, x0,

1
nk+1

)
= 1. Since

M

(
xn, x0,

1

nk

)
≥M

(
xn, x0,

1

nk+1

)
∗M

(
x0, x0,

1

nk
− 1

nk+1

)
= M

(
xn, x0,

1

nk+1

)
∗ 1 ≥M

(
xn, x0,

1

nk+1

)
,

lim
n→∞

M

(
xn, x0,

1

nk

)
≥ lim
n→∞

M

(
xn, x0,

1

nk+1

)
= 1.
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This implies that (xn) is an sk-convergent sequence in (X,M, ∗).
Let (xn) be a sequence which is sk+1-convergent to x0 ∈ X in fuzzy normed

space (X, ‖ · ‖). Then we can get the result by the following inequality:

‖xn − x0‖2 1

nk+1
≥ ‖xn − x0‖21

nk
.

(2) Let (xn) be a sequence which is st-convergent to x0 ∈ X in fuzzy metric
space (X,M, ∗). Then

lim
n,m→∞

M(xn, x0,
1

m
) = 1,

where n,m ∈ N by Proposition 2.1. Let p ∈ N. Then for m = np,

lim
n→∞

M(xn, x0,
1

np
) = 1.

This implies that (xn) is an s∞-convergent sequence in (X,M, ∗).
Let (xn) be a sequence which is st-convergent to x0 ∈ X in fuzzy normed

space (X, ‖ · ‖). Using Proposition 2.2, (xn) is an s∞-convergent sequence in
(X, ‖ · ‖). �

The converses of Proposition 2.3 are false, in general.

Example 2.4. Let M be a function on R× R× (0,∞) defined by

M(x, y, t) =
t

t+ |x− y|
.

Then (R,M, ·) is a fuzzy metric space [9]. Let xn = 1
nk+1 for k ∈ N. Then

M(xn, 0,
1

nk
) =

1
nk

1
nk

+ 1
nk+1

=
1

1 + 1
n

and

M(xn, 0,
1

nk+1
) =

1
nk+1

1
nk+1 + 1

nk+1

=
1

2
.

This means that (xn) is sk-convergent to 0 but not an sk+1-convergent sequence
to 0 in (R,M, ·).

Let yn = 1
nn and k ∈ N. Then

M

(
yn, 0,

1

nk

)
=

1
nk

1
nk

+ 1
nn

→ 1

as n → ∞. This means that (yn) is an s∞-convergent sequence in (R,M, ·).
We now show that (yn) is not an st-convergent sequence. Suppose that (yn) is
an st-convergent sequence. Then

lim
n,m→∞

M(yn, 0,
1

m
) = 1

and in particular, for m = nn,

lim
n→∞

M(yn, 0,
1

nn
) = 1.
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But M(yn, 0,
1
nn ) =

1
nn

1
nn+ 1

nn
= 1

2 . We get the contradiction. This completes

the proof.

The following example is found in [2].

Example 2.5. Let X = R and we define a fuzzy norm ‖ · ‖ on X by

‖x‖ =


|x|
t if |x| ≤ t, x 6= 0,

1 if t = |x| = 0,
0 otherwise.

Then (X, ‖ · ‖) is a fuzzy normed space introduced by C. Felbin [2] and α-level
set of (X, ‖ · ‖) is given by

[‖x‖]α =

[
|x|, |x|

α

]
.

Let xn = 1
nk+1 . Then

‖xn‖21
nk

=
1

nk+1

1
nk

=
1

n

and

‖xn‖2 1

nk+1
=

1
nk+1

1
nk+1

= 1.

These imply that (xn) is an sk-convergent and non-sk+1 convergent sequence
in (X, ‖ · ‖).

Let yn = 1
nn and k ∈ N. Then

‖yn‖21
nk

=
1
nn

1
nk

→ 0

as n → ∞. This means that (yn) is an s∞-convergent sequence in (X, ‖ · ‖).
We now show that (yn) is not an st-convergent sequence. Suppose that (yn) is
an st-convergent sequence. Then

lim
n,m→∞

‖yn‖21
m

= 0

and in particular, for m = nn,

lim
n→∞

‖yn‖21
nn

= 0

But ‖yn‖21
nn

= 1. We get the contradiction. This completes the proof.

By Proposition 2.3, Example 2.4 and Example 2.5, we get the following strict
implications in fuzzy metric spaces and fuzzy normed spaces:

st-conv.⇒ s∞-conv.⇒ · · · ⇒ sk+1-conv.⇒ sk-conv. · · · ⇒ s-conv.
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3. A subsequence of a convergent sequence in fuzzy metric spaces
and fuzzy normed spaces

The following proposition is found in [8].

Proposition 3.1. Let (X,M, ∗) be a fuzzy metric space.

(1) Each subsequence of an s-convergent sequence in X is s-convergent,
(2) Each convergent sequence in X admits an s-convergent subsequence.

We can get the similar results for sp-convergence and s∞-convergence in
fuzzy metric spaces and fuzzy normed spaces.

Theorem 3.2. Let (X,M, ∗) be a fuzzy metric space.

(1) Each subsequence of an sp-convergent sequence in X is sp-convergent
for all p ∈ N and each subsequence of an s∞-convergent sequence in X
is s∞-convergent,

(2) Each convergent sequence in X admits an sp-convergent subsequence
for all p ∈ N. Moreover, each convergent sequence in X admits an
s∞-convergent subsequence.

Proof. (1) Let (xn) be an sp-convergent sequence to x0 in X and (yk) a
subsequence of (xn), where yk = xnk and nk ≥ k. Since (xn) is an sp-
convergent sequence to x0 in X, for all ε ∈ (0, 1), there exists nε ∈ N such
that M

(
xn, x0,

1
np

)
> 1 − ε, for n ≥ nε. We can find k0 ∈ N such that

nk0 ≥ nε. If k ≥ k0,

M

(
yk, x0,

1

kp

)
= M

(
xnk , x0,

1

kp

)
≥M

(
xnk , x0,

1

(nk)
p

)
> 1− ε,

since nk ≥ nk0 ≥ nε and nk ≥ k. This implies that each subsequence of an
sp-convergent sequence in X is sp-convergent for all p ∈ N. It is same with
this proof to show each subsequence of an s∞-convergent sequence in X is
s∞-convergent.

(2) Since s∞-convergence implies sp-convergence, it suffices to show that
each convergent sequence in X admits an s∞-convergent subsequence. Suppose
that (xn) is a convergent sequence to x0 in X. Then for all r ∈ (0, 1) and
t > 0, there exists nr,t ∈ N such that M(xn, x0, t) > 1 − r for n ≥ nr,t. Let
xn1

= x1. Since xn → x0, there exists n2(≥ 2) ∈ N such that M
(
xn2

, x0,
1
22

)
>

1 − 1
22 . Since xn → x0, there exists n3 (≥ max{3, n2 + 1}) ∈ N such that

M
(
xn3

, x0,
1
33

)
> 1− 1

33 .
...

Continuing this process, we get a subsequence (xnk) of (xn) such that

M

(
xnk , x0,

1

kk

)
> 1− 1

kk
for all k ∈ N.

We now show that (xnk) is s∞-convergent to x0. Let ε ∈ (0, 1) and p ∈ N. Then
there exists k0 ∈ N such that 1

k0p
≤ ε. If k ≥ max{k0, p}, M

(
xnk , x0,

1
kp

)
≥
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M
(
xnk , x0,

1
kk

)
> 1 − 1

kk
≥ 1 − 1

k0p
≥ 1 − ε. This means that (xnk) is sp-

convergent. Since p ∈ N is arbitrary, (xnk) is s∞-convergent. �

Theorem 3.3. Let (X, ‖ · ‖) be a fuzzy normed space introduced by C. Felbin.

(1) Each subsequence of an sp-convergent sequence in X is sp-convergent
for all p ∈ N and each subsequence of an s∞-convergent sequence in X
is s∞-convergent,

(2) Each convergent sequence in X admits an sp-convergent subsequence
for all p ∈ N. Moreover, each convergent sequence in X admits an
s∞-convergent subsequence.

Proof. (1) Let (xn) be an sp-convergent sequence to x0 in (X, ‖ · ‖) and (yk)
a subsequence of (xn), where yk = xnk and nk ≥ k. Since (xn) is an sp-
convergent sequence to x0 in X, for all ε ∈ (0, 1), there exists nε such that
‖xn−x0‖21

np
< ε, for n ≥ nε. We can find k0 ∈ N such that nk0 ≥ nε. If k ≥ k0,

‖yk − x0‖21
kp

= ‖xnk − x0‖21
kp
≤ ‖xnk − x0‖2 1

nk
p
< ε,

since nk ≥ nk0 ≥ nε and nk ≥ k. This implies that each subsequence of an
sp-convergent sequence in X is sp-convergent for all p ∈ N. It is same with
this proof to show each subsequence of an s∞-convergent sequence in X is
s∞-convergent.

(2) Suppose that (xn) is a convergent sequence to x0 in (X, ‖ · ‖). Then for
all ε > 0 and α ∈ (0, 1], there exists nε,α ∈ N such that ‖xn − x0‖2α < ε for
n ≥ nε,α. Let xn1

= x1. Since xn → x0, there exists n2(≥ 2) ∈ N such that
‖xn2 − x0‖21

22
< 1

22 . Since xn → x0, there exists n3 (≥ max{3, n2 + 1}) ∈ N

such that ‖xn3
− x0‖21

33
< 1

33 .

...

Continuing this process, we get a subsequence (xnk) of (xn) such that

‖xnk − x0‖21
kk
<

1

kk
for all k ∈ N.

We now show that (xnk) is s∞-convergent to x0. Let ε > 0 and p ∈ N. Then
there exists k0 ∈ N such that 1

k0p
≤ ε. If k ≥ max{k0, p}, ‖xnk − x0‖21

kp
≤

‖xnk − x0‖21
kk
< 1

kk
≤ 1

k0p
≤ ε. This means that (xnk) is sp-convergent. Since

p ∈ N is arbitrary, (xnk) is s∞-convergent. �

We note that sp-convergence does not imply sp+1-convergence in fuzzy met-
ric spaces and fuzzy normed spaces [Example 2.4 and 2.5]. However, we can
get the following corollary by (2) of Theorem 3.2 and (2) of Theorem 3.3, since
sp-convergence and s∞-convergence in fuzzy metric spaces and fuzzy normed
spaces implies convergence for all p ∈ N.
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Corollary 3.4. Any sp-convergent sequence in fuzzy metric spaces or fuzzy
normed spaces admits sp+1-convergent subsequence, for all p ∈ N and s∞-
convergent subsequence.

By Proposition 2.3 and Corollary 3.4, it is natural to consider the following
question.

Question. Does an sp-convergent sequence or an s∞-convergent sequence ad-
mit st-subsequence in fuzzy metric spaces or fuzzy normed spaces?

The answer is negative. It suffices to show that an s∞-convergent sequence
does not admit st-subsequence in fuzzy metric spaces or fuzzy normed spaces
in general, since an s∞-convergent sequence is an sp-convergent sequence.

Example 3.5. Let M be a function on R× R× (0,∞) defined by

M(x, y, t) =
t

t+ |x− y|
.

Then (R,M, ·) is a fuzzy metric space [9]. Let yn = 1
nn . Then {yn} is s∞-

convergent to 0 by Example 2.4. We now show that (yn) does not have an
st-convergent subsequence. Suppose that there exists a subsequence (ynk) of
(yn) which is st-convergent. Then

lim
k,m→∞

M

(
ynk , 0,

1

m

)
= 1

and in particular, for m = nnkk ,

lim
k→∞

M

(
ynk , 0,

1

nnkk

)
= 1.

But M(ynk , 0,
1
n
nk
k

) = 1
2 . We get the contradiction. This completes the proof.

The following example is found in [2].

Example 3.6. Let X = R and we define a fuzzy norm ‖ · ‖ on X by

‖x‖ =


|x|
t if |x| ≤ t, x 6= 0,

1 if t = |x| = 0,
0 otherwise.

Then (X, ‖ · ‖) is a fuzzy normed space introduced by C. Felbin [2] and α-level
set of (X, ‖ · ‖) is given by

[‖x‖]α =

[
|x|, |x|

α

]
.

Let yn = 1
nn . Then {yn} is s∞-convergent to 0 (Example 2.5). We now

show that (yn) has not st-convergent subsequence. Suppose that there exists a
subsequence (ynk) of (yn) which is st-convergent. Then

lim
k,m→∞

‖ynk‖
2
1
m

= 0
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and in particular, for m = nnkk ,

lim
k→∞

‖ynk‖
2

1

n
nk
k

= 0.

But ‖ynk‖
2

1

n
nk
k

= 1. We get the contradiction. This completes our proof.

The following theorem is found in [9].

Theorem 3.7. Every convergent sequence in a fuzzy metric space (X,M, ∗) is
st-convergent if and only if every convergent sequence in X is s-convergent.

We can get the same result on fuzzy normed spaces.

Theorem 3.8. Every convergent sequence in a fuzzy normed space (X, ‖ · ‖)
introduced by C. Felbin is st-convergent if and only if every convergent sequence
in (X, ‖ · ‖) is s-convergent.

Proof. If every convergent sequence in (X, ‖ · ‖) is st-convergent, then every
convergent sequence in (X, ‖ · ‖) is s-convergent, since st-convergence implies
s-convergence.

Conversely, suppose that every convergent sequence in (X, ‖ · ‖) is s-conver-
gent. Assume the assertion were false; there exists a convergent sequence (xn)
to x0 in (X, ‖ · ‖) which is not st-convergent. Then there exists δ > 0 such that
for all k ∈ N, ‖xn(k) − x0‖2α(k) ≥ δ, for some n(k)(≥ k) ∈ N and α(k) ∈ (0, 1].

We may take n1 ∈ N such that n1 ≥ max
{

1
α(1) , n(1) + 1

}
and let

y1 = y2 = · · · = yn1
= xn(1).

We may take n2 ∈ N such that n2 ≥ max
{

1
α(n1)

, n(n1) + 1
}

and let

yn1+1 = yn1+2 = · · · = yn2
= xn(n1).

...

Continuing this process, we get a sequence (yj) such that

nk(∈ N) ≥ max

{
1

α(nk−1)
, n(nk−1) + 1

}
, k ∈ N, n0 = 1

and

ynk+1 = ynk+2 = · · · = ynk+1
= xn(nk).

We now show that (yj) converges to x0 in (X, ‖ ·‖). Since (xn) converges to x0,
for all ε > 0 and α ∈ (0, 1], there exists nε,α ∈ N such that ‖xn − x0‖ < ε, for
n ≥ nε,α. Since n(nk) is increasing, there exists k0 ∈ N such that n(nk0) ≥ nε,α.
If j ≥ nk0 + 1, yj = xn(nk) for some k ≥ k0. Then if j ≥ nk0 + 1,

‖yj − x0‖2α = ‖xn(nk) − x0‖
2
α < ε,
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since n(nk) ≥ n(nk0) ≥ nε,α, yj = xn(nk) and k ≥ k0. We finally show that
(yj) is not s-convergent to x0. For k ∈ N,

‖ynk+1
− x0‖2 1

nk+1

= ‖xn(nk) − x0‖
2

1
nk+1

≥ ‖xn(nk) − x0‖
2
α(nk)

≥ δ.

This completes the proof. �

It is clear that if a convergent sequence in fuzzy metric spaces (or fuzzy
normed spaces) is not s-converges, then it is not st-converges, since st-conver-
gence implies s-convergence in fuzzy metric spaces (or fuzzy normed spaces).
The converse is not true, in general. There exist convergent non-st-convergence
sequences examples which are s-convergent in fuzzy metric spaces (or fuzzy
normed spaces) [9] and [3]. However, we can get the following corollary, by the
proofs of Theorem 3.7 and Theorem 3.8.

Corollary 3.9. Let (X,M, ∗) be a fuzzy metric space and (X, ‖ · ‖) a fuzzy
normed space introduced by C. Felbin.

(1) If (xn) is convergent to x0 and non-st-convergent sequence in a fuzzy
metric space (X,M, ∗), we can construct a sequence (yn) which is con-
vergent to x0 and non-s-convergent sequence in (X,M, ∗).

(2) If (xn) is convergent to x0 and non-st-convergent sequence in a fuzzy
normed space (X, ‖ · ‖), we can construct a sequence (yn) which is
convergent to x0 and non-s-convergent sequence in (X, ‖ · ‖).

4. Stationary fuzzy normed spaces and sp-closed sets

A fuzzy metric M on X is said to be stationary [9] if M does not depend
on t, i.e. if for each x, y ∈ X, the function Mx,y(t) = M(x, y, t) is constant. In
this case we write M(x, y) instead of M(x, y, t). In similar way, we can define
the stationary fuzzy normed spaces.

Definition 4. A fuzzy normed space (X, ‖ · ‖) introduced by C. Felbin is said
to be stationary if for each x ∈ X, ‖x‖(t) is constant for all t ∈ R.

Non-trivial examples of stationary fuzzy metric spaces are found in [10], [13].
Stationary fuzzy normed spaces, however, are trivial.

Proposition 4.1. If (X, ‖ · ‖) is a stationary fuzzy normed space introduced
by C. Felbin, ‖x‖(t) = 1 for all x ∈ X and t ∈ R.

Proof. Let x ∈ X. Then for all t ∈ R, ‖x‖(t) is constant. Since ‖x‖ is normal,
‖x‖(t) = 1 for all t ∈ R. �

We now introduce the following definitions.

Definition 5. Let (X,M, ∗) be a fuzzy metric space and (X, ‖ · ‖) a fuzzy
normed space introduced by C. Felbin.
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(1) A subset C of X is said to be closed in (X,M, ∗) if for any sequence
(xn) in C converges to x, i.e., limn→∞M(xn, x, t) = 1 for t > 0, x ∈ C.
A subset C of X is said to be sp-closed if for any sequence (xn) in C
sp-converges to x, i.e., limn→∞M

(
xn, x,

1
np

)
= 1, x ∈ C. A subset C

of X is said to be st-closed if for any sequence (xn) in C st-converges
to x, i.e., limn,m→∞M

(
xn, x,

1
m

)
= 1, x ∈ C.

(2) A subset C of X is said to be closed in (X, ‖·‖) if for any sequence (xn)
in C converges to x, i.e., limn→∞ ‖xn − x‖2α = 0 for α ∈ (0, 1], x ∈ C.
A subset C of X is said to be sp-closed if for any sequence (xn) in C
sp-converges to x, i.e., limn→∞ ‖xn − x‖21

np
= 0, x ∈ C. A subset C of

X is said to be st-closed if for any sequence (xn) in C st-converges to
x, i.e., limn,m→∞N‖xn − x‖21

m

= 0, x ∈ C.

A subset C of X is said to be s-closed if it is s1-closed in X and a subset C of
X is said to be s∞-closed if it is sp-closed in X for all p ∈ N.

Since st-conv. ⇒ s∞-conv.⇒ · · · ⇒ sp-conv. ⇒ s-conv.· · · ⇒ conv., we
get the following implication for a subset C in fuzzy metric spaces and fuzzy
normed space:

closed⇒ s-closed⇒ · · · ⇒ sp-closed⇒ s∞-closed⇒ st-closed.

Proposition 4.2. Closedness, sp-closedness and s∞-closedness are coincide
in fuzzy metric spaces and fuzzy normed spaces.

Proof. It suffices to show that s∞-closedness implies closedness. Let X be
a fuzzy metric space. Let C be an s∞-closed subset of X. Let (xn) be a
convergent sequence to x in X. Then there exists a subsequence (yn) of (xn)
such that (yn) is s∞-convergent to x, by Theorem 3.2 and Theorem 3.3. Since
C is s∞-closed, x ∈ C. This completes the proof. �

We now consider relation of st-closedness and closedness.

Lemma 4.3. Let X = R and we define a function M on X ×X × (0,∞) by

M(x, y, t) =
t

t+ |x− y|
.

Then (X,M, ·) is a fuzzy metric space (Example 2.4). A sequence (xn) in X
is st-convergent to x0 if and only if there exists N ∈ N such that xn = x0 for
all n ≥ N (i.e., (xn) is eventually constant).

Proof. It is clear that if (xn) is eventually constant, then (xn) in X is st-
convergent.

Conversely, suppose that (xn) in X is st-convergent to x0. Then for all
ε > 0, there exists Nε ∈ N such that

M(xn, x0,
1

m
) =

1
m

1
m + |xn − x0|

> 1− ε for n,m ≥ Nε.
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For ε = 1
2 ,

M(xn, x0,
1

m
) =

1
m

1
m + |xn − x0|

>
1

2
, for n,m ≥ N 1

2
.

This implies that

|xn − x0| <
1

m
for n,m ≥ N 1

2
.

Let n ≥ N 1
2
. Then

|xn − x0| = lim
m→∞

|xn − x0| ≤ lim
m→∞

1

m
= 0.

This implies that xn = x0 for n ≥ N 1
2
. This completes the proof. �

Example 4.4. Let C = {1, 1
22 ,

1
33 , . . . ,

1
nn , . . . } be a set of R in Example 2.4.

Then C is not sp-closed and not s∞-closed, for all p ∈ N, since
(

1
nn

)
is s∞-

convergent to 0 by Example 2.4 and 0 /∈ C. C is st-closed, since any st-
convergent sequence in X is eventually constant by Lemma 4.3.

We can also get the same result in fuzzy normed spaces introduced by C.
Felbin.

Lemma 4.5. Let X = R and we define a fuzzy norm ‖ · ‖ on X by

‖x‖ =


|x|
t if |x| ≤ t, x 6= 0,

1 if t = |x| = 0,
0 otherwise.

Then (X, ‖ · ‖) is a fuzzy normed space introduced by C. Felbin [2]. A sequence
(xn) in X is st-convergent to x0 if and only if there exists N ∈ N such that
xn = x0 for all n ≥ N (i.e., (xn) is eventually constant).

Proof. It is clear that if (xn) is eventually constant, then (xn) in X is st-
convergent.

Conversely, suppose that (xn) in X is st-convergent to x0. Then for all
ε > 0, there exists Nε ∈ N such that

‖xn − x0‖21
m

= m |xn − x0| < ε for n,m ≥ Nε.

For ε = 1
2 ,

‖xn − x0‖21
m

= m |xn − x0| <
1

2
for n,m ≥ N 1

2
.

This implies that

|xn − x0| <
1

2m
for n,m ≥ N 1

2
.

Let n ≥ N 1
2
. Then

|xn − x0| = lim
m→∞

|xn − x0| ≤ lim
m→∞

1

2m
= 0.
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This implies that xn = x0 for n ≥ N 1
2
. This completes the proof. �

Example 4.6. Let C = {1, 1
22 ,

1
33 , . . . ,

1
nn , . . . } be a set of X in Example 2.5.

Then C is not sp-closed and not s∞-closed, for all p ∈ N, since
(

1
nn

)
is s∞-

convergent to 0 in (X, ‖ · ‖) by Example 2.5 and 0 /∈ C. C is st-closed set, since
any st-convergent sequence in (X, ‖ · ‖) is eventually constant by Lemma 4.5.

By Proposition 4.2, Example 4.4 and Example 4.6, we get the following
diagram in fuzzy metric spaces and normed spaces:

closedness⇔ sp-closedness⇔ s∞-closedness⇒ st-closedness.

We finally introduce another definition of fuzzy normed space suggested by
R. Saadati and S. M. Vaezpour [12].

Definition 6. The triple (X,N, ∗) is said to be a fuzzy normed space if X is a
vector space and ∗ is a continuous t-norm and N is a fuzzy set on X × (0,∞)
satisfying the following conditions, for all x, y ∈ X, s, t > 0,

(N1) N(x, t) > 0,
(N2) N(x, t) = 1 if and only if x = 0,

(N3) N(αx, t) = N
(
x, t
|α|

)
for any α 6= 0,

(N4) N(x, s) ∗N(y, t) ≤ N(x+ y, s+ t),
(N5) N(x, ) : (0,∞)→ [0, 1] is continuous.
(N6) limt→∞N(x, t) = 1.

The following is found in [12].

Lemma 4.7. Let (X,N, ∗) be a fuzzy normed space. If we define a fuzzy set
M on X ×X × (0,∞) by

M(x, y, t) = N(x− y, t),

then M is a fuzzy metric on X, which is called the fuzzy metric induced by the
fuzzy norm N .

By Lemma 4.7, if topological property is satisfied in fuzzy metric spaces,
it is also satisfied in fuzzy normed spaces introduced by R. Saadati and S.
M. Vaezpour. All convergence properties in fuzzy metric spaces in this paper
are also satisfied in fuzzy normed spaces introduced by R. Saadati and S. M.
Vaezpour. Lemma 4.7 shows that the fuzzy norm in fuzzy normed spaces intro-
duced by R. Saadati and S. M. Vaezpour could induce fuzzy metric. However,
it is not easy to see whether or not the fuzzy norm in fuzzy normed spaces
introduce by C. Felbin could induce a fuzzy metric. This will be the subject of
further study.
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