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IDEALIZATION OF EM-HERMITE RINGS

HiBA ABDELKARIM, EMAD ABUOSBA, AND MANAL GHANEM

ABSTRACT. A commutative ring R with unityis called EM-Hermite if for
each a,b € R there exist ¢,d, f € R such that a = cd, b = cf and the ideal
(d, f) is regular in R. We showed in this article that R is a PP-ring if
and only if the idealization R(+)R is an EM-Hermite ring if and only if
R[z]/(z™t1) is an EM-Hermite ring for each n € N. We generalize some
results, and answer some questions in the literature.

1. Introduction

Let R be a commutative ring with unity. Let Z(R) be the set of zero-divisors
in R, and Reg(R) = R\Z(R) be the set of regular elements. An ideal I of R is
called a regular ideal if I contains a regular element.

A ring R is called EM-Hermite if for each a,b € R, there exist a1,b1,d € R
such that a = a1d, b = b;d and the ideal (aq,b1) is regular.

If for each f(x) € Z(R[z]) we can write f(z) = cyfi(x), where ¢y € R and
fi(x) € reg(Rx]), then R is called an EM-ring, see [1]. It is clear that any
EM-Hermite is EM-ring, but the converse is not in general true, see [4].

A ring R is called a morphic ring if for each a € R there exists b € R such
that Ann(a) = bR and Ann(b) = aR. Tt is called generalized morphic if for
each a € R there exists b € R such that Ann(a) = bR, see [7].

A ring R is called a PP-ring if every principal ideal of R is a projective
R-module. It is well known that R is a PP-ring if and only if for each a €
R, Ann(a) is generated by an idempotent if and only if for each a € R there
exist an idempotent e and a regular element r such that a = er, see [2].

A ring R is called von Neumann regular if for each a € R there exists b € R
such that @ = a?b. It is well known that R is von Neumann regular if and only
if for each a € R there exist an idempotent e and a unit u such that a = eu.

A ring R is said to have property A, if a finitely generated ideal I is contained
in Z(R) if and only if it has a non-zero annihilator.
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Recall that if R is a ring, and M is an R-module, then the idealization
R(+)M is the set of all ordered pairs (r,m) € R x M, equipped with addi-
tion defined by (r,m) + (s,n) = (r + s,m + n) and multiplication defined by
(r,m)(s,n) = (rs,rn + sm). It is well-known that R(+)R = R[z] /(x?). For
the general case, we consider the ring R[z] /(z"*!), where n € N. In this case
we set R[z] /(") = {3 ja; X" :a; € R, X =2+ (")}

The following proposition was proved in [5], and [6].

Proposition 1.1. Let R be a ring. Then the following are equivalent:

(1) The ring R is von Neumann regular.

(2) The ring R[z]/(z"1) is morphic for each n € N.

(3) The ring R(+)R is morphic.

Motivated by these results, the authors in [3] proved the following;:

Proposition 1.2. The following statements are equivalent for a ring R:
(1) R is a PP-ring.
(2) R[z]/(z™*1) is a generalized morphic ring for each n € N.
(3) R(+)R is a generalized morphic ring.
(4) R(+)R is an EM-ring.
But the authors could not prove whether this is also equivalent to
Rlz]/(z"*1)
being EM-ring for each n € N.
In this article we answer the question raised in [3] positively. We also show

that it is equivalent to R(+)R is EM-Hermite, and it is also equivalent to
R[z]/(x"T1) is EM-Hermite for each n € N.

2. Idealization of EM-Hermite rings

Lemma 2.1. If R(+)R is EM-Hermite, then R is EM-Hermite.
Proof. Let a,b € R. Then (a,0), (b,0) € R(+)R, and so, there exist (c,d),
(z,v), (z,w) € R(+)R such that

(CL,O) = (C’ d)(x,y),

(b70) = (Ca d)(zaw)a
with the ideal ((x,y),(z,w)) is regular in R(+)R. So there exist (z1,y1),
(‘T27y2)a (7"1,7"2) € R(+)R such that (:Clayl)(xvy) + (3527y2)(«2,w) = (7"177”2) €
Reg(R(+)R).

Thus we have

a = cz,
b=cz,
r1 = 212 + 222 € Reg(R).
Hence, R is EM-Hermite as required. (I
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The converse of the above lemma is not in general true, since Z4 is EM-
Hermite, but Z4(+4)Z4 is not. The following lemma is easily proved.

Lemma 2.2. Let R be aring, n € N, and 31" (3, X%, 30" v, X" € Rlz]/(z"T1).
Then:

(1) Y0 B, X" is zero-divisor in R[z]/(z" ') if and only if B, is a zero-
divisor in R.

(2) Ann(SS1 B,X', 570 7, X7) # 0} i and only if Ann(8,7,) # {0},

(3) If R has property A, then the ideal (3. o B;X" > o7, X") is reqular
in R[z]/(z" 1) if and only if the ideal (By,7,) is reqular in R.

Theorem 2.3. The following are equivalent for a ring R:
(1) The ring R is a PP-ring.
(2) The ring R[z]/(z™*) is EM-Hermite for each n € N.
(3) The idealization S = R(+)R is EM-Hermite.
Proof. (1) = (2) Let a(X),b(X) € S such that a(X) = > I, a; X", b(X) =
S obi X% Since R is a PP-ring, then for each i = 0,...,n, we can write
a; = u;r;,b; = v;s; such that uf = u,, vf = v;, and r;, s; are regular elements
in R.
Define
J
1—e; =[]0 —w)1—-v) forj=0,1,2,...,n.
i=0
Then clearly we have e? = e; for each j. Moreover, for each ¢ and j, e;je; = ey,
whenever j > i, and so e;ja; = a;, and e;b; = b; whenever j > . Thus,
(ej —ej—1)a; =0 = (ej — ej_1)b;, whenever j > i. Also, it is clear that

- ooy (e —e)  ifi=k,
(eit1 —ei)(er+1 ek)—{ 0 otherwise.

Now, let d,,(X) € S such that
d(X) = a; X7,
=0
with _
ap = e and o = Z(—1)§+1(ej —€j_1),

jli

and let p,(X), g, (X) € S such that
pa(X) =) B X,
=0

gn(X) = Z’ViXia
=0
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such that for i =0,1,...,n—1,
n—it

i =(ai+ Y (ej—ej1)ain; + (1—en)),
j=1

v =i+ (e —ej-1)bir; + (1 —ey)), and
j=1

ﬁn =0n, Vp = by.

We claim that d,(X)p,(X) = a(X) and d,,(X)g,(X) = b(X).
We will proceed by induction on n to show that d,(X)p,(X) = a(X).

n | dn(X) pn(X) dn (X)pn(X)
0 €0 ag [en)
1 |ey+ (61 —€O)X [(L0+(€1 —60)(11 + (1 —61)} +a1X | ag+ a1 X
[a() —+ (61 — 60)0,1
| e
+(62 _ 61)}X2 —I—[a1 + (61 - 60)&2 + (1 - 62)]X
+CL2X2

ap+a1 X +as X2

Assume now that the result is true for n = k — 1, i.e., dp—1(X)pr—1(X) =
Yo X g X =i aiX’

Define dg (X) =dg—1 (X)+[; . (—1)7 " (e5—e; )] X5, pr(X) = iy X7,
where §; = 8, + (ex—i — ex—i—1)ar for i =0,1,...,k — 1, and 0 = ai.

Then for i +j < k, a;0; = ;3; + ai(ep—j — ex—j—1)ag = a;f;, since if a;
contains the term (ey_; — ex—j—1), then k — j would divide 4, which is not the
case, since k — j > i.

Hence, di(X)pr(X) = di—1(X)pr—1(X) + D254 jos a;d ;] X*.

We are done if we show that Ziﬂ.:k a;d; = ag.

Assume that (e, —e;,—1)as is a term in Ziﬂ.:k a;0;. Then we have 3 cases:

Case 1: m = s < k. This term occurs when multiplying (e,, — €,,—1) from
Qk—m With @, in d,,, and this implies that k — m = ml;, and so, m|k which
implies that the term will also occur when multiplying (e, — €;,—1) from «y
with (e;, — €m—1)am in dg, and therefore k = mly, and so lo = I3 + 1. Thus,
we have the terms (—1)1% (e, — em_1)am + (—=1)2+ (e, — €m_1)am, = 0 in
Dy ik @ilje

A similar argument will be obtained if the term occurs when multiplying
(em — em—1) from oy, with (€, — em—1)am, in do.

Case 2: m < s < k. This term occurs when multiplying (e, — €,,—1) from
ap_s with ag in dg, and this implies that &k — s = ml;, and so m|(k — s + m)
which means that the term will also occur when multiplying (e, — €,,—1) from
Q—stm With (€, —em—1)as in d5—p,, and this implies that k—s+m = mls, and
s0 Iy = I; +1. Thus, we have the terms (—1) (e, — e _1)as +(—1)2T1 (e, —
em—1)as =0 in Eiﬂ-:k a;0;.
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A similar argument will be obtained if the term occurs when multiplying
(em — em—1) from a,__, = with (e — em—1)am in ds_p,.

Case 3: m < s = k. Then we will have the terms: (ex — ex—1)ag + (ex—1 —
ep—a2)ar + -+ (e2 —e1)ar + (e1 — ep)ax + epaxr, = epax = ag.

Thus d(X)pr(X) = E?:o a; X%, and so it follows by induction that

dn (X)pn(X) = a(X).

Similarly, one can show that d,,(X)g,(X) = b(X).

To show that (pn(X),q,(X)) is a regular ideal in R[z]/(z"*1), it suffices
using Lemma 2.2 to show that the ideal I = (5, ~,) is regular in R.

Note that

(1—en)By=(1—en) €l
6050 =ap € I,
e1(Bo —ag) = (e1 —eg)ay € I,

62(60 —ag — (61 — 6())&1) = (eg — €1)(L2 S I,

(en —en—1)an € I.

Similarly, one can show that by, (e; —e;_1)b; € I fori =1,2,...,n.

Let a € Ann(I). Then aay = 0 = aby, and so, auy = 0 = awvg, hence
aeg = 0.

Also, aay = afe; —eg)a; = 0= ae; — eg)by = aby, and so, au; = 0 = awvy,
which implies that ae; = 0.

Continue to get ae; = 0 for ¢ = 0,1,...,n. But we have also (1 —e,) € I,
and so 0 = a(l —e,) = a — ae, = a.

Thus, Ann(8y,7v,) = {0}, and since R has property A, we must have I =
(Bo, Vo) a regular ideal in R.

Using Lemma 2.2, we get that (p,(X), ¢,(X)) is a regular ideal in R[z]/(z" 1),
and so, R[x]/(z"*!) is an EM-Hermite ring.

(2) = (3) The result is clear since R(+)R is isomorphic to R[x]/(z?).

(3) = (1) Assume S = R(+)R is an EM-Hermite ring. Let b € Z(R)\{0}.
Then it suffices to show that Anng(b) is generated by an idempotent and hence
R is a PP-ring.

Now, let (0,1),(b,0) € S. Since S is an EM-Hermite ring, there exist ele-
ments (n1,my), (n2, mz2), (o, 8) € S such that

(O’ 1) = (’I’L1,ml)(04,ﬂ),

(b7 O) = (7’7/2, m?)(aa 6)7
where the ideal (n1,m1)S + (n2, m2)S & Z(S). This implies that
nia =0,

nfB+ma=1,
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noax = b,
na2f + moa = 0.
Therefore,
b=>bl =bn1f+mia) =bni1 B+ bmia = (nea)ni1 B+ bmia =0+ bmya.
Thus Anng(mia) C Anng(b). Also note that
(mia)? = (mia)? + Bm1(0) = (m1a)? + Bmi(nia)
=mia(mia+n1f8) = ma(l) =mia.
Now, let d € Anng(b). Then
(damy)n; = dmq(any) = dmq(0) =0,
(dami)ng = dmy(ang) = dmib = (db)m; = 0,
Thus dam; € Anng(ni) N Anng(ns), and so we have
(0,dam,) € Anng(ni,m1) N Anng(ng, m2) = {(0,0)}.

Hence, d € Anng(amy), and so Annr(b) = Anng(amy) = (1 — amq)R, is
generated by an idempotent. ([

To clarify the above proof, we give the following example.

Example 2.4. The ring Zio[z]/(z*) is an EM-Hermite ring, since Z is a
PP-ring.

Let a(X) =64+ 4X +5X2 +8X3 b(X) =44 6X + 7X? +9X? € Zyo[z]/(z*).

Writing a; = u;r;, b; = v;s;, with u; and v; are idempotents, r; and s; are
regular, and 1 — e; = [[_o(1 — u;)(1 — v;). Thus we have:

) a; | U bi Vi | €;
066 |4|6]|6
11416 |6|616
2/5 |5 |7]1)|1
318161911

Now let
p3(X) = [ag + (e1 —ep)as + (e2 — e1)as + (e3 — e2)as + (1 — e3)]
+ [a1 + (e1 —ep)ag + (e2 — e1)as + (1 —e3)] X
+ [az + (e1 —eg)az + (1 — e3)] X2 + az X>.
Then ps(X) = 1+ 4X + 5X2 4 8X3,
q3(X) = [bo + (e1 — €0)by + (e2 — e1)ba + (e3 — e2)bs + 1 — e3]

+[b1+ (e1 —eg)ba + (e2 —e1)bs + (1 —e3)] X
+ [ba + (e1 — eo)bs + (1 — e3)] X? + b3 X,
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Then ¢3(X) =9+ X +7X% +9X3.
d3(X) = eo + (e1 — €)X + [(e0 — €1) + (e2 — €1)] X
+ [(e1 — eg) + (e3 — e2)] X3,

Then d3(X) =6+ 5X2.
Simple computations yield a(X) = p3(X)ds(X),b(X) = ¢3(X)ds(X).
Now, the ideal (ag, 84)Z10 = (1,9)Z10 = Z10. Hence, the ideal

(P3(X), 43(X))Z1o[z]/(z*) = Zao[2]/(z*)
is regular as required.

It was shown in [4] that if R is Noetherian, then R is generalized morphic
if and only if it is an EM-ring if and only if it is an EM-Hermite ring. While
if R was not Noetherian, then the result is false. Now we answer the question
raised in [3] concerning the case at which R[z]/(z"™1) is an EM-ring, and we
give more equivalent conditions to Proposition 1.2 above.

Theorem 2.5. The following statements are equivalent for a ring R:

(1) R[z]/(z™*1) is a generalized morphic ring for each n € N.
(2) R[z]/(2™*1) is an EM-Hermite ring for each n € N.

(3) R[z]/(z™*) is an EM-ring for each n € N.

(4) R(+)R is a generalized morphic ring.

(5) R(+)R is an EM-Hermite ring.

(6) R(+)R is an EM-ring.

(7) R is a PP-ring.

Proof. For the equivalence of (1), (4), (6) and (7), see [3].
The equivalence of (2), (5) and (7) follows from Theorem 2.3.
(2) = (3) = (6) are clear. O
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