IDEALIZATION OF EM-HERMITE RINGS

Hiba Abdelkarim, Emad Abuosba, and Manal Ghanem

Abstract

A commutative ring R with unityis called EM-Hermite if for each $a, b \in R$ there exist $c, d, f \in R$ such that $a=c d, b=c f$ and the ideal (d, f) is regular in R. We showed in this article that R is a PP-ring if and only if the idealization $R(+) R$ is an EM-Hermite ring if and only if $R[x] /\left(x^{n+1}\right)$ is an EM-Hermite ring for each $n \in \mathbb{N}$. We generalize some results, and answer some questions in the literature.

1. Introduction

Let R be a commutative ring with unity. Let $Z(R)$ be the set of zero-divisors in R, and $\operatorname{Reg}(R)=R \backslash Z(R)$ be the set of regular elements. An ideal I of R is called a regular ideal if I contains a regular element.

A ring R is called EM-Hermite if for each $a, b \in R$, there exist $a_{1}, b_{1}, d \in R$ such that $a=a_{1} d, b=b_{1} d$ and the ideal $\left(a_{1}, b_{1}\right)$ is regular.

If for each $f(x) \in Z(R[x])$ we can write $f(x)=c_{f} f_{1}(x)$, where $c_{f} \in R$ and $f_{1}(x) \in \operatorname{reg}(R[x])$, then R is called an EM-ring, see [1]. It is clear that any EM-Hermite is EM-ring, but the converse is not in general true, see [4].

A ring R is called a morphic ring if for each $a \in R$ there exists $b \in R$ such that $\operatorname{Ann}(a)=b R$ and $\operatorname{Ann}(b)=a R$. It is called generalized morphic if for each $a \in R$ there exists $b \in R$ such that $A n n(a)=b R$, see [7].

A ring R is called a PP-ring if every principal ideal of R is a projective R-module. It is well known that R is a PP-ring if and only if for each $a \in$ $R, \operatorname{Ann}(a)$ is generated by an idempotent if and only if for each $a \in R$ there exist an idempotent e and a regular element r such that $a=e r$, see [2].

A ring R is called von Neumann regular if for each $a \in R$ there exists $b \in R$ such that $a=a^{2} b$. It is well known that R is von Neumann regular if and only if for each $a \in R$ there exist an idempotent e and a unit u such that $a=e u$.

A ring R is said to have property A, if a finitely generated ideal I is contained in $Z(R)$ if and only if it has a non-zero annihilator.

[^0]Recall that if R is a ring, and M is an R-module, then the idealization $R(+) M$ is the set of all ordered pairs $(r, m) \in R \times M$, equipped with addition defined by $(r, m)+(s, n)=(r+s, m+n)$ and multiplication defined by $(r, m)(s, n)=(r s, r n+s m)$. It is well-known that $R(+) R \cong R[x] /\left(x^{2}\right)$. For the general case, we consider the ring $R[x] /\left(x^{n+1}\right)$, where $n \in \mathbb{N}$. In this case we set $R[x] /\left(x^{n+1}\right)=\left\{\sum_{i=0}^{n} a_{i} X^{i}: a_{i} \in R, X=x+\left(x^{n+1}\right)\right\}$.

The following proposition was proved in [5], and [6].
Proposition 1.1. Let R be a ring. Then the following are equivalent:
(1) The ring R is von Neumann regular.
(2) The ring $R[x] /\left(x^{n+1}\right)$ is morphic for each $n \in \mathbb{N}$.
(3) The ring $R(+) R$ is morphic.

Motivated by these results, the authors in [3] proved the following:
Proposition 1.2. The following statements are equivalent for a ring R :
(1) R is a PP-ring.
(2) $R[x] /\left(x^{n+1}\right)$ is a generalized morphic ring for each $n \in \mathbb{N}$.
(3) $R(+) R$ is a generalized morphic ring.
(4) $R(+) R$ is an EM-ring.

But the authors could not prove whether this is also equivalent to

$$
R[x] /\left(x^{n+1}\right)
$$

being EM-ring for each $n \in \mathbb{N}$.
In this article we answer the question raised in [3] positively. We also show that it is equivalent to $R(+) R$ is EM-Hermite, and it is also equivalent to $R[x] /\left(x^{n+1}\right)$ is EM-Hermite for each $n \in \mathbb{N}$.

2. Idealization of EM-Hermite rings

Lemma 2.1. If $R(+) R$ is EM-Hermite, then R is EM-Hermite.
Proof. Let $a, b \in R$. Then $(a, 0),(b, 0) \in R(+) R$, and so, there exist (c, d), $(x, y),(z, w) \in R(+) R$ such that

$$
\begin{aligned}
(a, 0) & =(c, d)(x, y) \\
(b, 0) & =(c, d)(z, w)
\end{aligned}
$$

with the ideal $((x, y),(z, w))$ is regular in $R(+) R$. So there exist $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right),\left(r_{1}, r_{2}\right) \in R(+) R$ such that $\left(x_{1}, y_{1}\right)(x, y)+\left(x_{2}, y_{2}\right)(z, w)=\left(r_{1}, r_{2}\right) \in$ $\operatorname{Reg}(R(+) R)$.

Thus we have

$$
\begin{aligned}
a & =c x \\
b & =c z \\
r_{1} & =x_{1} x+x_{2} z \in \operatorname{Reg}(R) .
\end{aligned}
$$

Hence, R is EM-Hermite as required.

The converse of the above lemma is not in general true, since \mathbb{Z}_{4} is EMHermite, but $\mathbb{Z}_{4}(+) \mathbb{Z}_{4}$ is not. The following lemma is easily proved.
Lemma 2.2. Let R be a ring, $n \in \mathbb{N}$, and $\sum_{i=0}^{n} \beta_{i} X^{i}, \sum_{i=0}^{n} \gamma_{i} X^{i} \in R[x] /\left(x^{n+1}\right)$. Then:
(1) $\sum_{i=0}^{n} \beta_{i} X^{i}$ is zero-divisor in $R[x] /\left(x^{n+1}\right)$ if and only if β_{0} is a zerodivisor in R.
(2) $\operatorname{Ann}\left(\sum_{i=0}^{n} \beta_{i} X^{i}, \sum_{i=0}^{n} \gamma_{i} X^{i}\right) \neq\{0\}$ if and only if $\operatorname{Ann}\left(\beta_{0}, \gamma_{0}\right) \neq\{0\}$.
(3) If R has property A, then the ideal $\left(\sum_{i=0}^{n} \beta_{i} X^{i}, \sum_{i=0}^{n} \gamma_{i} X^{i}\right)$ is regular in $R[x] /\left(x^{n+1}\right)$ if and only if the ideal $\left(\beta_{0}, \gamma_{0}\right)$ is regular in R.

Theorem 2.3. The following are equivalent for a ring R :
(1) The ring R is a PP-ring.
(2) The ring $R[x] /\left(x^{n+1}\right)$ is EM-Hermite for each $n \in \mathbb{N}$.
(3) The idealization $S=R(+) R$ is EM-Hermite.

Proof. (1) $\Rightarrow(2)$ Let $a(X), b(X) \in S$ such that $a(X)=\sum_{i=0}^{n} a_{i} X^{i}, b(X)=$ $\sum_{i=0}^{n} b_{i} X^{i}$. Since R is a PP-ring, then for each $i=0, \ldots, n$, we can write $a_{i}=u_{i} r_{i}, b_{i}=v_{i} s_{i}$ such that $u_{i}^{2}=u_{i}, v_{i}^{2}=v_{i}$, and r_{i}, s_{i} are regular elements in R.

Define

$$
1-e_{j}=\prod_{i=0}^{j}\left(1-u_{i}\right)\left(1-v_{i}\right) \text { for } j=0,1,2, \ldots, n
$$

Then clearly we have $e_{j}^{2}=e_{j}$ for each j. Moreover, for each i and $j, e_{j} e_{i}=e_{i}$, whenever $j \geq i$, and so $e_{j} a_{i}=a_{i}$, and $e_{j} b_{i}=b_{i}$ whenever $j \geq i$. Thus, $\left(e_{j}-e_{j-1}\right) a_{i}=0=\left(e_{j}-e_{j-1}\right) b_{i}$, whenever $j>i$. Also, it is clear that

$$
\left(e_{i+1}-e_{i}\right)\left(e_{k+1}-e_{k}\right)=\left\{\begin{array}{cl}
\left(e_{i+1}-e_{i}\right) & \text { if } i=k \\
0 & \text { otherwise }
\end{array}\right.
$$

Now, let $d_{n}(X) \in S$ such that

$$
d_{n}(X)=\sum_{i=0}^{n} \alpha_{i} X^{i}
$$

with

$$
\alpha_{0}=e_{0} \text { and } \alpha_{i}=\sum_{j \mid i}(-1)^{\frac{i}{j}+1}\left(e_{j}-e_{j-1}\right),
$$

and let $p_{n}(X), q_{n}(X) \in S$ such that

$$
\begin{aligned}
& p_{n}(X)=\sum_{i=0}^{n} \beta_{i} X^{i} \\
& q_{n}(X)=\sum_{i=0}^{n} \gamma_{i} X^{i}
\end{aligned}
$$

such that for $i=0,1, \ldots, n-1$,

$$
\begin{aligned}
& \beta_{i}=\left(a_{i}+\sum_{j=1}^{n-i}\left(e_{j}-e_{j-1}\right) a_{i+j}+\left(1-e_{n}\right)\right) \\
& \gamma_{i}=\left(b_{i}+\sum_{j=1}^{n-i}\left(e_{j}-e_{j-1}\right) b_{i+j}+\left(1-e_{n}\right)\right), \text { and } \\
& \beta_{n}=a_{n}, \quad \gamma_{n}=b_{n}
\end{aligned}
$$

We claim that $d_{n}(X) p_{n}(X)=a(X)$ and $d_{n}(X) q_{n}(X)=b(X)$.
We will proceed by induction on n to show that $d_{n}(X) p_{n}(X)=a(X)$.

n	$d_{n}(X)$	$p_{n}(X)$	$d_{n}(X) p_{n}(X)$
0	e_{0}	a_{0}	a_{0}
1	$e_{0}+\left(e_{1}-e_{0}\right) X$	$\left[a_{0}+\left(e_{1}-e_{0}\right) a_{1}+\left(1-e_{1}\right)\right]+a_{1} X$	$a_{0}+a_{1} X$
2	$\begin{gathered} e_{0}+\left(e_{1}-e_{0}\right) X \\ +\left[\left(e_{0}-e_{1}\right)\right. \\ \left.+\left(e_{2}-e_{1}\right)\right] X^{2} \end{gathered}$	$\begin{gathered} {\left[a_{0}+\left(e_{1}-e_{0}\right) a_{1}\right.} \\ \left.+\left(e_{2}-e_{1}\right) a_{2}+\left(1-e_{2}\right)\right] \\ +\left[a_{1}+\left(e_{1}-e_{0}\right) a_{2}+\left(1-e_{2}\right)\right] X \\ +a_{2} X^{2} \end{gathered}$	$a_{0}+a_{1} X+a_{2} X^{2}$

Assume now that the result is true for $n=k-1$, i.e., $d_{k-1}(X) p_{k-1}(X)=$ $\sum_{i=0}^{k-1} \alpha_{i} X^{i} \sum_{i=0}^{k-1} \beta_{i} X^{i}=\sum_{i=0}^{k-1} a_{i} X^{i}$.

Define $d_{k}(X)=d_{k-1}(X)+\left[\sum_{j \mid k}(-1)^{\frac{k}{j}+1}\left(e_{j}-e_{j-1}\right)\right] X^{k}, p_{k}(X)=\sum_{i=0}^{k} \delta_{i} X^{i}$, where $\delta_{i}=\beta_{i}+\left(e_{k-i}-e_{k-i-1}\right) a_{k}$ for $i=0,1, \ldots, k-1$, and $\delta_{k}=a_{k}$.

Then for $i+j<k, \alpha_{i} \delta_{j}=\alpha_{i} \beta_{j}+\alpha_{i}\left(e_{k-j}-e_{k-j-1}\right) a_{k}=\alpha_{i} \beta_{j}$, since if α_{i} contains the term $\left(e_{k-j}-e_{k-j-1}\right)$, then $k-j$ would divide i, which is not the case, since $k-j>i$.

Hence, $d_{k}(X) p_{k}(X)=d_{k-1}(X) p_{k-1}(X)+\left[\sum_{i+j=k} \alpha_{i} \delta_{j}\right] X^{k}$.
We are done if we show that $\sum_{i+j=k} \alpha_{i} \delta_{j}=a_{k}$.
Assume that $\left(e_{m}-e_{m-1}\right) a_{s}$ is a term in $\sum_{i+j=k} \alpha_{i} \delta_{j}$. Then we have 3 cases:
Case 1: $m=s<k$. This term occurs when multiplying $\left(e_{m}-e_{m-1}\right)$ from α_{k-m} with a_{m} in δ_{m}, and this implies that $k-m=m l_{1}$, and so, $m \mid k$ which implies that the term will also occur when multiplying $\left(e_{m}-e_{m-1}\right)$ from α_{k} with $\left(e_{m}-e_{m-1}\right) a_{m}$ in δ_{0}, and therefore $k=m l_{2}$, and so $l_{2}=l_{1}+1$. Thus, we have the terms $(-1)^{l_{1}+1}\left(e_{m}-e_{m-1}\right) a_{m}+(-1)^{l_{2}+1}\left(e_{m}-e_{m-1}\right) a_{m}=0$ in $\sum_{i+j=k} \alpha_{i} \delta_{j}$.

A similar argument will be obtained if the term occurs when multiplying $\left(e_{m}-e_{m-1}\right)$ from α_{k} with $\left(e_{m}-e_{m-1}\right) a_{m}$ in δ_{0}.

Case 2: $m<s<k$. This term occurs when multiplying ($e_{m}-e_{m-1}$) from α_{k-s} with a_{s} in δ_{s}, and this implies that $k-s=m l_{1}$, and so $m \mid(k-s+m)$ which means that the term will also occur when multiplying $\left(e_{m}-e_{m-1}\right)$ from α_{k-s+m} with $\left(e_{m}-e_{m-1}\right) a_{s}$ in δ_{s-m}, and this implies that $k-s+m=m l_{2}$, and so $l_{2}=l_{1}+1$. Thus, we have the terms $(-1)^{l_{1}+1}\left(e_{m}-e_{m-1}\right) a_{s}+(-1)^{l_{2}+1}\left(e_{m}-\right.$ $\left.e_{m-1}\right) a_{s}=0$ in $\sum_{i+j=k} \alpha_{i} \delta_{j}$.

A similar argument will be obtained if the term occurs when multiplying $\left(e_{m}-e_{m-1}\right)$ from α_{k-s+m} with $\left(e_{m}-e_{m-1}\right) a_{m}$ in δ_{s-m}.

Case 3: $m \leq s=k$. Then we will have the terms: $\left(e_{k}-e_{k-1}\right) a_{k}+\left(e_{k-1}-\right.$ $\left.e_{k-2}\right) a_{k}+\cdots+\left(e_{2}-e_{1}\right) a_{k}+\left(e_{1}-e_{0}\right) a_{k}+e_{0} a_{k}=e_{k} a_{k}=a_{k}$.

Thus $d_{k}(X) p_{k}(X)=\sum_{i=0}^{k} a_{i} X^{i}$, and so it follows by induction that

$$
d_{n}(X) p_{n}(X)=a(X)
$$

Similarly, one can show that $d_{n}(X) q_{n}(X)=b(X)$.
To show that $\left(p_{n}(X), q_{n}(X)\right)$ is a regular ideal in $R[x] /\left(x^{n+1}\right)$, it suffices using Lemma 2.2 to show that the ideal $I=\left(\beta_{0}, \gamma_{0}\right)$ is regular in R.

Note that

$$
\begin{aligned}
\left(1-e_{n}\right) \beta_{0} & =\left(1-e_{n}\right) \in I, \\
e_{0} \beta_{0} & =a_{0} \in I, \\
e_{1}\left(\beta_{0}-a_{0}\right) & =\left(e_{1}-e_{0}\right) a_{1} \in I, \\
e_{2}\left(\beta_{0}-a_{0}-\left(e_{1}-e_{0}\right) a_{1}\right) & =\left(e_{2}-e_{1}\right) a_{2} \in I,
\end{aligned}
$$

$$
\left(e_{n}-e_{n-1}\right) a_{n} \in I
$$

Similarly, one can show that $b_{0},\left(e_{i}-e_{i-1}\right) b_{i} \in I$ for $i=1,2, \ldots, n$.
Let $\alpha \in \operatorname{Ann}(I)$. Then $\alpha a_{0}=0=\alpha b_{0}$, and so, $\alpha u_{0}=0=\alpha v_{0}$, hence $\alpha e_{0}=0$.

Also, $\alpha a_{1}=\alpha\left(e_{1}-e_{0}\right) a_{1}=0=\alpha\left(e_{1}-e_{0}\right) b_{1}=\alpha b_{1}$, and so, $\alpha u_{1}=0=\alpha v_{1}$, which implies that $\alpha e_{1}=0$.

Continue to get $\alpha e_{i}=0$ for $i=0,1, \ldots, n$. But we have also $\left(1-e_{n}\right) \in I$, and so $0=\alpha\left(1-e_{n}\right)=\alpha-\alpha e_{n}=\alpha$.

Thus, $\operatorname{Ann}\left(\beta_{0}, \gamma_{0}\right)=\{0\}$, and since R has property A, we must have $I=$ $\left(\beta_{0}, \gamma_{0}\right)$ a regular ideal in R.

Using Lemma 2.2, we get that $\left(p_{n}(X), q_{n}(X)\right)$ is a regular ideal in $R[x] /\left(x^{n+1}\right)$, and so, $R[x] /\left(x^{n+1}\right)$ is an EM-Hermite ring.
$(2) \Rightarrow(3)$ The result is clear since $R(+) R$ is isomorphic to $R[x] /\left(x^{2}\right)$.
$(3) \Rightarrow(1)$ Assume $S=R(+) R$ is an EM-Hermite ring. Let $b \in Z(R) \backslash\{0\}$. Then it suffices to show that $A n n_{R}(b)$ is generated by an idempotent and hence R is a PP-ring.

Now, let $(0,1),(b, 0) \in S$. Since S is an EM-Hermite ring, there exist elements $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),(\alpha, \beta) \in S$ such that

$$
\begin{aligned}
& (0,1)=\left(n_{1}, m_{1}\right)(\alpha, \beta), \\
& (b, 0)=\left(n_{2}, m_{2}\right)(\alpha, \beta),
\end{aligned}
$$

where the ideal $\left(n_{1}, m_{1}\right) S+\left(n_{2}, m_{2}\right) S \varsubsetneqq Z(S)$. This implies that

$$
\begin{aligned}
n_{1} \alpha & =0, \\
n_{1} \beta+m_{1} \alpha & =1,
\end{aligned}
$$

$$
\begin{aligned}
n_{2} \alpha & =b, \\
n_{2} \beta+m_{2} \alpha & =0 .
\end{aligned}
$$

Therefore,

$$
b=b 1=b\left(n_{1} \beta+m_{1} \alpha\right)=b n_{1} \beta+b m_{1} \alpha=\left(n_{2} \alpha\right) n_{1} \beta+b m_{1} \alpha=0+b m_{1} \alpha .
$$

Thus $A n n_{R}\left(m_{1} \alpha\right) \subseteq A n n_{R}(b)$. Also note that

$$
\begin{aligned}
\left(m_{1} \alpha\right)^{2} & =\left(m_{1} \alpha\right)^{2}+\beta m_{1}(0)=\left(m_{1} \alpha\right)^{2}+\beta m_{1}\left(n_{1} \alpha\right) \\
& =m_{1} \alpha\left(m_{1} \alpha+n_{1} \beta\right)=m_{1} \alpha(1)=m_{1} \alpha .
\end{aligned}
$$

Now, let $d \in A n n_{R}(b)$. Then

$$
\begin{aligned}
& \left(d \alpha m_{1}\right) n_{1}=d m_{1}\left(\alpha n_{1}\right)=d m_{1}(0)=0 \\
& \left(d \alpha m_{1}\right) n_{2}=d m_{1}\left(\alpha n_{2}\right)=d m_{1} b=(d b) m_{1}=0
\end{aligned}
$$

Thus $d \alpha m_{1} \in A n n_{R}\left(n_{1}\right) \cap A n n_{R}\left(n_{2}\right)$, and so we have

$$
\left(0, d \alpha m_{1}\right) \in A n n_{S}\left(n_{1}, m_{1}\right) \cap A n n_{S}\left(n_{2}, m_{2}\right)=\{(0,0)\} .
$$

Hence, $d \in A n n_{R}\left(\alpha m_{1}\right)$, and so $A n n_{R}(b)=A n n_{R}\left(\alpha m_{1}\right)=\left(1-\alpha m_{1}\right) R$, is generated by an idempotent.

To clarify the above proof, we give the following example.
Example 2.4. The ring $\mathbb{Z}_{10}[x] /\left(x^{4}\right)$ is an EM-Hermite ring, since \mathbb{Z}_{10} is a PP-ring.
Let $a(X)=6+4 X+5 X^{2}+8 X^{3}, b(X)=4+6 X+7 X^{2}+9 X^{3} \in \mathbb{Z}_{10}[x] /\left(x^{4}\right)$.
Writing $a_{i}=u_{i} r_{i}, b_{i}=v_{i} s_{i}$, with u_{i} and v_{i} are idempotents, r_{i} and s_{i} are regular, and $1-e_{i}=\prod_{j=0}^{i}\left(1-u_{j}\right)\left(1-v_{j}\right)$. Thus we have:

i	a_{i}	u_{i}	b_{i}	v_{i}	e_{i}
0	6	6	4	6	6
1	4	6	6	6	6
2	5	5	7	1	1
3	8	6	9	1	1

Now let

$$
\begin{aligned}
p_{3}(X)= & {\left[a_{0}+\left(e_{1}-e_{0}\right) a_{1}+\left(e_{2}-e_{1}\right) a_{2}+\left(e_{3}-e_{2}\right) a_{3}+\left(1-e_{3}\right)\right] } \\
& +\left[a_{1}+\left(e_{1}-e_{0}\right) a_{2}+\left(e_{2}-e_{1}\right) a_{3}+\left(1-e_{3}\right)\right] X \\
& +\left[a_{2}+\left(e_{1}-e_{0}\right) a_{3}+\left(1-e_{3}\right)\right] X^{2}+a_{3} X^{3} .
\end{aligned}
$$

Then $p_{3}(X)=1+4 X+5 X^{2}+8 X^{3}$.

$$
\begin{aligned}
q_{3}(X)= & {\left[b_{0}+\left(e_{1}-e_{0}\right) b_{1}+\left(e_{2}-e_{1}\right) b_{2}+\left(e_{3}-e_{2}\right) b_{3}+1-e_{3}\right] } \\
& +\left[b_{1}+\left(e_{1}-e_{0}\right) b_{2}+\left(e_{2}-e_{1}\right) b_{3}+\left(1-e_{3}\right)\right] X \\
& +\left[b_{2}+\left(e_{1}-e_{0}\right) b_{3}+\left(1-e_{3}\right)\right] X^{2}+b_{3} X^{3} .
\end{aligned}
$$

Then $q_{3}(X)=9+X+7 X^{2}+9 X^{3}$.

$$
\begin{aligned}
d_{3}(X)= & e_{0}+\left(e_{1}-e_{0}\right) X+\left[\left(e_{0}-e_{1}\right)+\left(e_{2}-e_{1}\right)\right] X^{2} \\
& +\left[\left(e_{1}-e_{0}\right)+\left(e_{3}-e_{2}\right)\right] X^{3} .
\end{aligned}
$$

Then $d_{3}(X)=6+5 X^{2}$.
Simple computations yield $a(X)=p_{3}(X) d_{3}(X), b(X)=q_{3}(X) d_{3}(X)$.
Now, the ideal $\left(\alpha_{0}, \beta_{0}\right) \mathbb{Z}_{10}=(1,9) \mathbb{Z}_{10}=\mathbb{Z}_{10}$. Hence, the ideal

$$
\left(p_{3}(X), q_{3}(X)\right) \mathbb{Z}_{10}[x] /\left(x^{4}\right)=\mathbb{Z}_{10}[x] /\left(x^{4}\right)
$$

is regular as required.
It was shown in [4] that if R is Noetherian, then R is generalized morphic if and only if it is an EM-ring if and only if it is an EM-Hermite ring. While if R was not Noetherian, then the result is false. Now we answer the question raised in [3] concerning the case at which $R[x] /\left(x^{n+1}\right)$ is an EM-ring, and we give more equivalent conditions to Proposition 1.2 above.

Theorem 2.5. The following statements are equivalent for a ring R :
(1) $R[x] /\left(x^{n+1}\right)$ is a generalized morphic ring for each $n \in \mathbb{N}$.
(2) $R[x] /\left(x^{n+1}\right)$ is an EM-Hermite ring for each $n \in \mathbb{N}$.
(3) $R[x] /\left(x^{n+1}\right)$ is an EM-ring for each $n \in \mathbb{N}$.
(4) $R(+) R$ is a generalized morphic ring.
(5) $R(+) R$ is an EM-Hermite ring.
(6) $R(+) R$ is an EM-ring.
(7) R is a PP-ring.

Proof. For the equivalence of (1), (4), (6) and (7), see [3].
The equivalence of (2), (5) and (7) follows from Theorem 2.3.
$(2) \Rightarrow(3) \Rightarrow(6)$ are clear.

References

[1] E. Abuosba and M. Ghanem, Annihilating content in polynomial and power series rings, To appear in J. Korean Math. Soc.
[2] S. Endo, Note on p.p. rings. (A supplement to Hattori's paper), Nagoya Math. J. 17 (1960), 167-170. http://projecteuclid.org/euclid.nmj/1118800460
[3] M. Ghanem and E. Abu Osba, Some extensions of generalized morphic rings and EMrings, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 26 (2018), no. 1, 111-123. https: //doi.org/10.2478/auom-2018-0007
[4] \qquad , EM-Hermite rings, Submitted.
[5] T.-K. Lee and Y. Zhou, Morphic rings and unit regular rings, J. Pure Appl. Algebra 210 (2007), no. 2, 501-510. https://doi.org/10.1016/j.jpaa.2006.10.005
[6] _ Regularity and morphic property of rings, J. Algebra 322 (2009), no. 4, 10721085. https://doi.org/10.1016/j.jalgebra.2009.04.046
[7] H. Zhu and N. Ding, Generalized morphic rings and their applications, Comm. Algebra 35 (2007), no. 9, 2820-2837. https://doi.org/10.1080/00927870701354017

Hiba Abdelkarim
The University of Jordan
School of Science
Mathematics Department
Amman 11942, Jordan
Email address: hiba_adel2010@yahoo.com
Emad Abuosba
The University of Jordan
School of Science
Mathematics Department
Amman 11942, Jordan
Email address: eabuosba@ju.edu.jo
Manal Ghanem
The University of Jordan
School of Science
Mathematics Department
Amman 11942, Jordan
Email address: m.ghanem@ju.edu.jo

[^0]: Received November 17, 2018; Accepted March 13, 2019.
 2010 Mathematics Subject Classification. 13A, 13B25, 13B30, 13C10.
 Key words and phrases. EM-Hermite ring, PP-ring, idealization.
 This paper is a part of the Ph.D. thesis of the first author under supervision of the other authors in The University of Jordan.

