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IDEALIZATION OF EM-HERMITE RINGS

Hiba Abdelkarim, Emad Abuosba, and Manal Ghanem

Abstract. A commutative ring R with unityis called EM-Hermite if for

each a, b ∈ R there exist c, d, f ∈ R such that a = cd, b = cf and the ideal

(d, f) is regular in R. We showed in this article that R is a PP-ring if
and only if the idealization R(+)R is an EM-Hermite ring if and only if

R[x]/(xn+1) is an EM-Hermite ring for each n ∈ N. We generalize some
results, and answer some questions in the literature.

1. Introduction

Let R be a commutative ring with unity. Let Z(R) be the set of zero-divisors
in R, and Reg(R) = R\Z(R) be the set of regular elements. An ideal I of R is
called a regular ideal if I contains a regular element.

A ring R is called EM-Hermite if for each a, b ∈ R, there exist a1, b1, d ∈ R
such that a = a1d, b = b1d and the ideal (a1, b1) is regular.

If for each f(x) ∈ Z(R[x]) we can write f(x) = cff1(x), where cf ∈ R and
f1(x) ∈ reg(R[x]), then R is called an EM-ring, see [1]. It is clear that any
EM-Hermite is EM-ring, but the converse is not in general true, see [4].

A ring R is called a morphic ring if for each a ∈ R there exists b ∈ R such
that Ann(a) = bR and Ann(b) = aR. It is called generalized morphic if for
each a ∈ R there exists b ∈ R such that Ann(a) = bR, see [7].

A ring R is called a PP-ring if every principal ideal of R is a projective
R-module. It is well known that R is a PP-ring if and only if for each a ∈
R,Ann(a) is generated by an idempotent if and only if for each a ∈ R there
exist an idempotent e and a regular element r such that a = er, see [2].

A ring R is called von Neumann regular if for each a ∈ R there exists b ∈ R
such that a = a2b. It is well known that R is von Neumann regular if and only
if for each a ∈ R there exist an idempotent e and a unit u such that a = eu.

A ring R is said to have property A, if a finitely generated ideal I is contained
in Z(R) if and only if it has a non-zero annihilator.
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Recall that if R is a ring, and M is an R-module, then the idealization
R(+)M is the set of all ordered pairs (r,m) ∈ R ×M , equipped with addi-
tion defined by (r,m) + (s, n) = (r + s,m + n) and multiplication defined by
(r,m)(s, n) = (rs, rn + sm). It is well-known that R(+)R ∼= R[x]

/
(x2) . For

the general case, we consider the ring R[x]
/

(xn+1) , where n ∈ N. In this case

we set R[x]
/

(xn+1) = {
∑n

i=0 aiX
i : ai ∈ R,X = x+ (xn+1)}.

The following proposition was proved in [5], and [6].

Proposition 1.1. Let R be a ring. Then the following are equivalent:
(1) The ring R is von Neumann regular.
(2) The ring R[x]/(xn+1) is morphic for each n ∈ N.
(3) The ring R(+)R is morphic.

Motivated by these results, the authors in [3] proved the following:

Proposition 1.2. The following statements are equivalent for a ring R:
(1) R is a PP-ring.
(2) R[x]/(xn+1) is a generalized morphic ring for each n ∈ N.
(3) R(+)R is a generalized morphic ring.
(4) R(+)R is an EM-ring.

But the authors could not prove whether this is also equivalent to

R[x]/(xn+1)

being EM-ring for each n ∈ N.
In this article we answer the question raised in [3] positively. We also show

that it is equivalent to R(+)R is EM-Hermite, and it is also equivalent to
R[x]/(xn+1) is EM-Hermite for each n ∈ N.

2. Idealization of EM-Hermite rings

Lemma 2.1. If R(+)R is EM-Hermite, then R is EM-Hermite.

Proof. Let a, b ∈ R. Then (a, 0), (b, 0) ∈ R(+)R, and so, there exist (c, d),
(x, y), (z, w) ∈ R(+)R such that

(a, 0) = (c, d)(x, y),

(b, 0) = (c, d)(z, w),

with the ideal ((x, y), (z, w)) is regular in R(+)R. So there exist (x1, y1),
(x2, y2), (r1, r2) ∈ R(+)R such that (x1, y1)(x, y) + (x2, y2)(z, w) = (r1, r2) ∈
Reg(R(+)R).

Thus we have

a = cx,

b = cz,

r1 = x1x+ x2z ∈ Reg(R).

Hence, R is EM-Hermite as required. �
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The converse of the above lemma is not in general true, since Z4 is EM-
Hermite, but Z4(+)Z4 is not. The following lemma is easily proved.

Lemma 2.2. Let R be a ring, n ∈ N, and
∑n

i=0 βiX
i,
∑n

i=0 γiX
i ∈ R[x]/(xn+1).

Then:
(1)

∑n
i=0 βiX

i is zero-divisor in R[x]/(xn+1) if and only if β0 is a zero-
divisor in R.

(2) Ann(
∑n

i=0 βiX
i,
∑n

i=0 γiX
i) 6= {0} if and only if Ann(β0, γ0) 6= {0}.

(3) If R has property A, then the ideal (
∑n

i=0 βiX
i,
∑n

i=0 γiX
i) is regular

in R[x]/(xn+1) if and only if the ideal (β0, γ0) is regular in R.

Theorem 2.3. The following are equivalent for a ring R:
(1) The ring R is a PP-ring.
(2) The ring R[x]/(xn+1) is EM-Hermite for each n ∈ N.
(3) The idealization S = R(+)R is EM-Hermite.

Proof. (1) ⇒ (2) Let a(X), b(X) ∈ S such that a(X) =
∑n

i=0 aiX
i, b(X) =∑n

i=0 biX
i. Since R is a PP-ring, then for each i = 0, . . . , n, we can write

ai = uiri, bi = visi such that u2i = ui, v
2
i = vi, and ri, si are regular elements

in R.
Define

1− ej =

j∏
i=0

(1− ui)(1− vi) for j = 0, 1, 2, . . . , n.

Then clearly we have e2j = ej for each j. Moreover, for each i and j, ejei = ei,
whenever j ≥ i, and so ejai = ai, and ejbi = bi whenever j ≥ i. Thus,
(ej − ej−1)ai = 0 = (ej − ej−1)bi, whenever j > i. Also, it is clear that

(ei+1 − ei)(ek+1 − ek) =

{
(ei+1 − ei) if i = k,

0 otherwise.

Now, let dn(X) ∈ S such that

dn(X) =

n∑
i=0

αiX
i,

with

α0 = e0 and αi =
∑
j|i

(−1)
i
j+1(ej − ej−1),

and let pn(X), qn(X) ∈ S such that

pn(X) =

n∑
i=0

βiX
i,

qn(X) =

n∑
i=0

γiX
i,
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such that for i = 0, 1, . . . , n− 1,

βi = (ai +

n−i∑
j=1

(ej − ej−1)ai+j + (1− en)),

γi = (bi +

n−i∑
j=1

(ej − ej−1)bi+j + (1− en)), and

βn = an, γn = bn.

We claim that dn(X)pn(X) = a(X) and dn(X)qn(X) = b(X).
We will proceed by induction on n to show that dn(X)pn(X) = a(X).

n dn(X) pn(X) dn(X)pn(X)
0 e0 a0 a0
1 e0 + (e1 − e0)X [a0 + (e1 − e0)a1 + (1− e1)] + a1X a0 + a1X

2
e0 + (e1 − e0)X

+[(e0 − e1)
+(e2 − e1)]X2

[a0 + (e1 − e0)a1
+(e2 − e1)a2 + (1− e2)]

+[a1 + (e1 − e0)a2 + (1− e2)]X
+a2X

2

a0+a1X+a2X
2

Assume now that the result is true for n = k − 1, i.e., dk−1(X)pk−1(X) =∑k−1
i=0 αiX

i
∑k−1

i=0 βiX
i =

∑k−1
i=0 aiX

i.

Define dk(X)=dk−1(X)+[
∑

j|k(−1)
k
j +1(ej−ej−1)]Xk, pk(X) =

∑k
i=0 δiX

i,

where δi = βi + (ek−i − ek−i−1)ak for i = 0, 1, . . . , k − 1, and δk = ak.
Then for i + j < k, αiδj = αiβj + αi(ek−j − ek−j−1)ak = αiβj , since if αi

contains the term (ek−j − ek−j−1), then k − j would divide i, which is not the
case, since k − j > i.

Hence, dk(X)pk(X) = dk−1(X)pk−1(X) + [
∑

i+j=k αiδj ]X
k.

We are done if we show that
∑

i+j=k αiδj = ak.

Assume that (em−em−1)as is a term in
∑

i+j=k αiδj . Then we have 3 cases:

Case 1: m = s < k. This term occurs when multiplying (em − em−1) from
αk−m with am in δm, and this implies that k −m = ml1, and so, m|k which
implies that the term will also occur when multiplying (em − em−1) from αk

with (em − em−1)am in δ0, and therefore k = ml2, and so l2 = l1 + 1. Thus,
we have the terms (−1)l1+1(em − em−1)am + (−1)l2+1(em − em−1)am = 0 in∑

i+j=k αiδj .
A similar argument will be obtained if the term occurs when multiplying

(em − em−1) from αk with (em − em−1)am in δ0.
Case 2: m < s < k. This term occurs when multiplying (em − em−1) from

αk−s with as in δs, and this implies that k − s = ml1, and so m|(k − s + m)
which means that the term will also occur when multiplying (em− em−1) from
αk−s+m with (em−em−1)as in δs−m, and this implies that k−s+m = ml2, and
so l2 = l1+1. Thus, we have the terms (−1)l1+1(em−em−1)as+(−1)l2+1(em−
em−1)as = 0 in

∑
i+j=k αiδj .
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A similar argument will be obtained if the term occurs when multiplying
(em − em−1) from α

k−s+m
with (em − em−1)am in δs−m.

Case 3: m ≤ s = k. Then we will have the terms: (ek − ek−1)ak + (ek−1 −
ek−2)ak + · · ·+ (e2 − e1)ak + (e1 − e0)ak + e0ak = ekak = ak.

Thus dk(X)pk(X) =
∑k

i=0 aiX
i, and so it follows by induction that

dn(X)pn(X) = a(X).

Similarly, one can show that dn(X)qn(X) = b(X).
To show that (pn(X), qn(X)) is a regular ideal in R[x]/(xn+1), it suffices

using Lemma 2.2 to show that the ideal I = (β0, γ0) is regular in R.
Note that

(1− en)β0 = (1− en) ∈ I,
e0β0 = a0 ∈ I,

e1(β0 − a0) = (e1 − e0)a1 ∈ I,
e2(β0 − a0 − (e1 − e0)a1) = (e2 − e1)a2 ∈ I,

...

(en − en−1)an ∈ I.

Similarly, one can show that b0, (ei − ei−1)bi ∈ I for i = 1, 2, . . . , n.
Let α ∈ Ann(I). Then αa0 = 0 = αb0, and so, αu0 = 0 = αv0, hence

αe0 = 0.
Also, αa1 = α(e1 − e0)a1 = 0 = α(e1 − e0)b1 = αb1, and so, αu1 = 0 = αv1,

which implies that αe1 = 0.
Continue to get αei = 0 for i = 0, 1, . . . , n. But we have also (1 − en) ∈ I,

and so 0 = α(1− en) = α− αen = α.
Thus, Ann(β0, γ0) = {0}, and since R has property A, we must have I =

(β0, γ0) a regular ideal in R.
Using Lemma 2.2, we get that (pn(X), qn(X)) is a regular ideal in R[x]/(xn+1),

and so, R[x]/(xn+1) is an EM-Hermite ring.
(2) ⇒ (3) The result is clear since R(+)R is isomorphic to R[x]/(x2).
(3) ⇒ (1) Assume S = R(+)R is an EM-Hermite ring. Let b ∈ Z(R)\{0}.

Then it suffices to show that AnnR(b) is generated by an idempotent and hence
R is a PP-ring.

Now, let (0, 1), (b, 0) ∈ S. Since S is an EM-Hermite ring, there exist ele-
ments (n1,m1), (n2,m2), (α, β) ∈ S such that

(0, 1) = (n1,m1)(α, β),

(b, 0) = (n2,m2)(α, β),

where the ideal (n1,m1)S + (n2,m2)S  Z(S). This implies that

n1α = 0,

n1β +m1α = 1,
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n2α = b,

n2β +m2α = 0.

Therefore,

b = b1 = b(n1β +m1α) = bn1β + bm1α = (n2α)n1β + bm1α = 0 + bm1α.

Thus AnnR(m1α) ⊆ AnnR(b). Also note that

(m1α)2 = (m1α)2 + βm1(0) = (m1α)2 + βm1(n1α)

= m1α(m1α+ n1β) = m1α(1) = m1α.

Now, let d ∈ AnnR(b). Then

(dαm1)n1 = dm1(αn1) = dm1(0) = 0,

(dαm1)n2 = dm1(αn2) = dm1b = (db)m1 = 0,

Thus dαm1 ∈ AnnR(n1) ∩AnnR(n2), and so we have

(0, dαm1) ∈ AnnS(n1,m1) ∩AnnS(n2,m2) = {(0, 0)}.
Hence, d ∈ AnnR(αm1), and so AnnR(b) = AnnR(αm1) = (1 − αm1)R, is
generated by an idempotent. �

To clarify the above proof, we give the following example.

Example 2.4. The ring Z10[x]/(x4) is an EM-Hermite ring, since Z10 is a
PP-ring.

Let a(X) = 6 + 4X + 5X2 + 8X3, b(X) = 4 + 6X + 7X2 + 9X3 ∈ Z10[x]/(x4).

Writing ai = uiri, bi = visi, with ui and vi are idempotents, ri and si are

regular, and 1− ei =
∏i

j=0(1− uj)(1− vj). Thus we have:

i ai ui bi vi ei
0 6 6 4 6 6
1 4 6 6 6 6
2 5 5 7 1 1
3 8 6 9 1 1

Now let

p3(X) = [a0 + (e1 − e0)a1 + (e2 − e1)a2 + (e3 − e2)a3 + (1− e3)]

+ [a1 + (e1 − e0)a2 + (e2 − e1)a3 + (1− e3)]X

+ [a2 + (e1 − e0)a3 + (1− e3)]X2 + a3X
3.

Then p3(X) = 1 + 4X + 5X2 + 8X3.

q3(X) = [b0 + (e1 − e0)b1 + (e2 − e1)b2 + (e3 − e2)b3 + 1− e3]

+ [b1 + (e1 − e0)b2 + (e2 − e1)b3 + (1− e3)]X

+ [b2 + (e1 − e0)b3 + (1− e3)]X2 + b3X
3.
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Then q3(X) = 9 +X + 7X2 + 9X3.

d3(X) = e0 + (e1 − e0)X + [(e0 − e1) + (e2 − e1)]X2

+ [(e1 − e0) + (e3 − e2)]X3.

Then d3(X) = 6 + 5X2.
Simple computations yield a(X) = p3(X)d3(X), b(X) = q3(X)d3(X).
Now, the ideal (α0, β0)Z10 = (1, 9)Z10 = Z10. Hence, the ideal

(p3(X), q3(X))Z10[x]/(x4) = Z10[x]/(x4)

is regular as required.

It was shown in [4] that if R is Noetherian, then R is generalized morphic
if and only if it is an EM-ring if and only if it is an EM-Hermite ring. While
if R was not Noetherian, then the result is false. Now we answer the question
raised in [3] concerning the case at which R[x]/(xn+1) is an EM-ring, and we
give more equivalent conditions to Proposition 1.2 above.

Theorem 2.5. The following statements are equivalent for a ring R:
(1) R[x]/(xn+1) is a generalized morphic ring for each n ∈ N.
(2) R[x]/(xn+1) is an EM-Hermite ring for each n ∈ N.
(3) R[x]/(xn+1) is an EM-ring for each n ∈ N.
(4) R(+)R is a generalized morphic ring.
(5) R(+)R is an EM-Hermite ring.
(6) R(+)R is an EM-ring.
(7) R is a PP-ring.

Proof. For the equivalence of (1), (4), (6) and (7), see [3].
The equivalence of (2), (5) and (7) follows from Theorem 2.3.
(2) ⇒ (3) ⇒ (6) are clear. �
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