Commun. Korean Math. Soc. 35 (2020), No. 1, pp. 13-20

https://doi.org/10.4134/CKMS.c180477 pISSN: 1225-1763 / eISSN: 2234-3024

IDEALIZATION OF EM-HERMITE RINGS

HIBA ABDELKARIM, EMAD ABUOSBA, AND MANAL GHANEM

ABSTRACT. A commutative ring R with unity is called EM-Hermite if for each $a,b \in R$ there exist $c,d,f \in R$ such that a=cd,b=cf and the ideal (d,f) is regular in R. We showed in this article that R is a PP-ring if and only if the idealization R(+)R is an EM-Hermite ring if and only if $R[x]/(x^{n+1})$ is an EM-Hermite ring for each $n \in \mathbb{N}$. We generalize some results, and answer some questions in the literature.

1. Introduction

Let R be a commutative ring with unity. Let Z(R) be the set of zero-divisors in R, and $Reg(R) = R \setminus Z(R)$ be the set of regular elements. An ideal I of R is called a regular ideal if I contains a regular element.

A ring R is called EM-Hermite if for each $a, b \in R$, there exist $a_1, b_1, d \in R$ such that $a = a_1d$, $b = b_1d$ and the ideal (a_1, b_1) is regular.

If for each $f(x) \in Z(R[x])$ we can write $f(x) = c_f f_1(x)$, where $c_f \in R$ and $f_1(x) \in reg(R[x])$, then R is called an EM-ring, see [1]. It is clear that any EM-Hermite is EM-ring, but the converse is not in general true, see [4].

A ring R is called a morphic ring if for each $a \in R$ there exists $b \in R$ such that Ann(a) = bR and Ann(b) = aR. It is called generalized morphic if for each $a \in R$ there exists $b \in R$ such that Ann(a) = bR, see [7].

A ring R is called a PP-ring if every principal ideal of R is a projective R-module. It is well known that R is a PP-ring if and only if for each $a \in R$, Ann(a) is generated by an idempotent if and only if for each $a \in R$ there exist an idempotent e and a regular element e such that e0.

A ring R is called von Neumann regular if for each $a \in R$ there exists $b \in R$ such that $a = a^2b$. It is well known that R is von Neumann regular if and only if for each $a \in R$ there exist an idempotent e and a unit e such that e is von Neumann regular.

A ring R is said to have property A, if a finitely generated ideal I is contained in Z(R) if and only if it has a non-zero annihilator.

Received November 17, 2018; Accepted March 13, 2019.

 $^{2010\} Mathematics\ Subject\ Classification.\ 13A,\ 13B25,\ 13B30,\ 13C10.$

Key words and phrases. EM-Hermite ring, PP-ring, idealization.

This paper is a part of the Ph.D. thesis of the first author under supervision of the other authors in The University of Jordan.

Recall that if R is a ring, and M is an R-module, then the idealization R(+)M is the set of all ordered pairs $(r,m) \in R \times M$, equipped with addition defined by (r,m)+(s,n)=(r+s,m+n) and multiplication defined by (r,m)(s,n)=(rs,rn+sm). It is well-known that $R(+)R\cong R[x]/(x^2)$. For the general case, we consider the ring $R[x]/(x^{n+1})$, where $n\in\mathbb{N}$. In this case we set $R[x]/(x^{n+1})=\{\sum_{i=0}^n a_i X^i: a_i\in R, X=x+(x^{n+1})\}$.

The following proposition was proved in [5], and [6].

Proposition 1.1. Let R be a ring. Then the following are equivalent:

- (1) The ring R is von Neumann regular.
- (2) The ring $R[x]/(x^{n+1})$ is morphic for each $n \in \mathbb{N}$.
- (3) The ring R(+)R is morphic.

Motivated by these results, the authors in [3] proved the following:

Proposition 1.2. The following statements are equivalent for a ring R:

- (1) R is a PP-ring.
- (2) $R[x]/(x^{n+1})$ is a generalized morphic ring for each $n \in \mathbb{N}$.
- (3) R(+)R is a generalized morphic ring.
- (4) R(+)R is an EM-ring.

But the authors could not prove whether this is also equivalent to

$$R[x]/(x^{n+1})$$

being EM-ring for each $n \in \mathbb{N}$.

In this article we answer the question raised in [3] positively. We also show that it is equivalent to R(+)R is EM-Hermite, and it is also equivalent to $R[x]/(x^{n+1})$ is EM-Hermite for each $n \in \mathbb{N}$.

2. Idealization of EM-Hermite rings

Lemma 2.1. If R(+)R is EM-Hermite, then R is EM-Hermite.

Proof. Let $a,b \in R$. Then $(a,0), (b,0) \in R(+)R$, and so, there exist $(c,d), (x,y), (z,w) \in R(+)R$ such that

$$(a,0) = (c,d)(x,y),$$

 $(b,0) = (c,d)(z,w),$

with the ideal ((x,y),(z,w)) is regular in R(+)R. So there exist (x_1,y_1) , $(x_2,y_2), (r_1,r_2) \in R(+)R$ such that $(x_1,y_1)(x,y) + (x_2,y_2)(z,w) = (r_1,r_2) \in Reg(R(+)R)$.

Thus we have

$$a = cx,$$

$$b = cz,$$

$$r_1 = x_1x + x_2z \in Reg(R).$$

Hence, R is EM-Hermite as required.

The converse of the above lemma is not in general true, since \mathbb{Z}_4 is EM-Hermite, but $\mathbb{Z}_4(+)\mathbb{Z}_4$ is not. The following lemma is easily proved.

Lemma 2.2. Let R be a ring, $n \in \mathbb{N}$, and $\sum_{i=0}^{n} \beta_i X^i$, $\sum_{i=0}^{n} \gamma_i X^i \in R[x]/(x^{n+1})$.

- (1) $\sum_{i=0}^{n} \beta_i X^i$ is zero-divisor in $R[x]/(x^{n+1})$ if and only if β_0 is a zerodivisor in R.
- (2) $Ann(\sum_{i=0}^{n} \beta_i X^i, \sum_{i=0}^{n} \gamma_i X^i) \neq \{0\}$ if and only if $Ann(\beta_0, \gamma_0) \neq \{0\}$. (3) If R has property A, then the ideal $(\sum_{i=0}^{n} \beta_i X^i, \sum_{i=0}^{n} \gamma_i X^i)$ is regular in $R[x]/(x^{n+1})$ if and only if the ideal (β_0, γ_0) is regular in R.

Theorem 2.3. The following are equivalent for a ring R:

- (1) The ring R is a PP-ring.
- (2) The ring $R[x]/(x^{n+1})$ is EM-Hermite for each $n \in \mathbb{N}$.
- (3) The idealization S = R(+)R is EM-Hermite.

Proof. (1) \Rightarrow (2) Let $a(X), b(X) \in S$ such that $a(X) = \sum_{i=0}^{n} a_i X^i$, $b(X) = \sum_{i=0}^{n} b_i X^i$. Since R is a PP-ring, then for each $i = 0, \dots, n$, we can write $a_i = u_i r_i, b_i = v_i s_i$ such that $u_i^2 = u_i, v_i^2 = v_i$, and r_i, s_i are regular elements in R.

Define

$$1 - e_j = \prod_{i=0}^{j} (1 - u_i)(1 - v_i) \text{ for } j = 0, 1, 2, \dots, n.$$

Then clearly we have $e_j^2 = e_j$ for each j. Moreover, for each i and j, $e_j e_i = e_i$, whenever $j \geq i$, and so $e_j a_i = a_i$, and $e_j b_i = b_i$ whenever $j \geq i$. Thus, $(e_j - e_{j-1})a_i = 0 = (e_j - e_{j-1})b_i$, whenever j > i. Also, it is clear that

$$(e_{i+1} - e_i)(e_{k+1} - e_k) = \begin{cases} (e_{i+1} - e_i) & \text{if } i = k, \\ 0 & \text{otherwise.} \end{cases}$$

Now, let $d_n(X) \in S$ such that

$$d_n(X) = \sum_{i=0}^n \alpha_i X^i,$$

with

$$\alpha_0 = e_0$$
 and $\alpha_i = \sum_{j|i} (-1)^{\frac{i}{j}+1} (e_j - e_{j-1}),$

and let $p_n(X), q_n(X) \in S$ such that

$$p_n(X) = \sum_{i=0}^n \beta_i X^i,$$

$$q_n(X) = \sum_{i=0}^n \gamma_i X^i,$$

such that for i = 0, 1, ..., n - 1,

$$\beta_i = (a_i + \sum_{j=1}^{n-i} (e_j - e_{j-1}) a_{i+j} + (1 - e_n)),$$

$$\gamma_i = (b_i + \sum_{j=1}^{n-i} (e_j - e_{j-1}) b_{i+j} + (1 - e_n)), \text{ and}$$

$$\beta_n = a_n, \ \gamma_n = b_n.$$

We claim that $d_n(X)p_n(X) = a(X)$ and $d_n(X)q_n(X) = b(X)$. We will proceed by induction on n to show that $d_n(X)p_n(X) = a(X)$.

n	$d_n(X)$	$p_n(X)$	$d_n(X)p_n(X)$
0	e_0	a_0	a_0
1	$e_0 + (e_1 - e_0)X$	$[a_0 + (e_1 - e_0)a_1 + (1 - e_1)] + a_1X$	$a_0 + a_1 X$
2	$e_0 + (e_1 - e_0)X + [(e_0 - e_1) + (e_2 - e_1)]X^2$	$ \begin{vmatrix} [a_0 + (e_1 - e_0)a_1 \\ + (e_2 - e_1)a_2 + (1 - e_2)] \\ + [a_1 + (e_1 - e_0)a_2 + (1 - e_2)]X \\ + a_2X^2 \end{vmatrix} $	$a_0 + a_1 X + a_2 X^2$

Assume now that the result is true for n = k - 1, i.e., $d_{k-1}(X)p_{k-1}(X) = \sum_{i=0}^{k-1} \alpha_i X^i \sum_{i=0}^{k-1} \beta_i X^i = \sum_{i=0}^{k-1} a_i X^i$.

Define $d_k(X) = d_{k-1}(X) + [\sum_{j|k} (-1)^{\frac{k}{j}+1} (e_j - e_{j-1})] X^k$, $p_k(X) = \sum_{i=0}^k \delta_i X^i$, where $\delta_i = \beta_i + (e_{k-i} - e_{k-i-1}) a_k$ for $i = 0, 1, \dots, k-1$, and $\delta_k = a_k$.

Then for i + j < k, $\alpha_i \delta_j = \alpha_i \beta_j + \alpha_i (e_{k-j} - e_{k-j-1}) a_k = \alpha_i \beta_j$, since if α_i contains the term $(e_{k-j} - e_{k-j-1})$, then k - j would divide i, which is not the case, since k - j > i.

Hence, $d_k(X)p_k(X) = d_{k-1}(X)p_{k-1}(X) + [\sum_{i+j=k} \alpha_i \delta_j]X^k$.

We are done if we show that $\sum_{i+j=k} \alpha_i \delta_j = a_k$.

Assume that $(e_m-e_{m-1})a_s$ is a term in $\sum_{i+j=k}\alpha_i\delta_j$. Then we have 3 cases: Case 1: m=s< k. This term occurs when multiplying (e_m-e_{m-1}) from α_{k-m} with a_m in δ_m , and this implies that $k-m=ml_1$, and so, m|k which implies that the term will also occur when multiplying (e_m-e_{m-1}) from α_k with $(e_m-e_{m-1})a_m$ in δ_0 , and therefore $k=ml_2$, and so $l_2=l_1+1$. Thus, we have the terms $(-1)^{l_1+1}(e_m-e_{m-1})a_m+(-1)^{l_2+1}(e_m-e_{m-1})a_m=0$ in $\sum_{i+j=k}\alpha_i\delta_j$.

A similar argument will be obtained if the term occurs when multiplying $(e_m - e_{m-1})$ from α_k with $(e_m - e_{m-1})a_m$ in δ_0 .

Case 2: m < s < k. This term occurs when multiplying $(e_m - e_{m-1})$ from α_{k-s} with a_s in δ_s , and this implies that $k-s=ml_1$, and so m|(k-s+m) which means that the term will also occur when multiplying (e_m-e_{m-1}) from α_{k-s+m} with $(e_m-e_{m-1})a_s$ in δ_{s-m} , and this implies that $k-s+m=ml_2$, and so $l_2=l_1+1$. Thus, we have the terms $(-1)^{l_1+1}(e_m-e_{m-1})a_s+(-1)^{l_2+1}(e_m-e_{m-1})a_s=0$ in $\sum_{i+j=k}\alpha_i\delta_j$.

A similar argument will be obtained if the term occurs when multiplying $(e_m - e_{m-1})$ from α_{k-s+m} with $(e_m - e_{m-1})a_m$ in δ_{s-m} .

Case 3: $m \le s = k$. Then we will have the terms: $(e_k - e_{k-1})a_k + (e_{k-1} - e_{k-1})a_k$ $(e_{k-2})a_k + \dots + (e_2 - e_1)a_k + (e_1 - e_0)a_k + e_0a_k = e_ka_k = a_k$. Thus $d_k(X)p_k(X) = \sum_{i=0}^k a_i X^i$, and so it follows by induction that

$$d_n(X)p_n(X) = a(X).$$

Similarly, one can show that $d_n(X)q_n(X) = b(X)$.

To show that $(p_n(X), q_n(X))$ is a regular ideal in $R[x]/(x^{n+1})$, it suffices using Lemma 2.2 to show that the ideal $I = (\beta_0, \gamma_0)$ is regular in R.

Note that

$$(1 - e_n)\beta_0 = (1 - e_n) \in I,$$

$$e_0\beta_0 = a_0 \in I,$$

$$e_1(\beta_0 - a_0) = (e_1 - e_0)a_1 \in I,$$

$$e_2(\beta_0 - a_0 - (e_1 - e_0)a_1) = (e_2 - e_1)a_2 \in I,$$

$$\vdots$$

$$(e_n - e_{n-1})a_n \in I.$$

Similarly, one can show that $b_0, (e_i - e_{i-1})b_i \in I$ for i = 1, 2, ..., n.

Let $\alpha \in Ann(I)$. Then $\alpha a_0 = 0 = \alpha b_0$, and so, $\alpha u_0 = 0 = \alpha v_0$, hence $\alpha e_0 = 0.$

Also, $\alpha a_1 = \alpha (e_1 - e_0) a_1 = 0 = \alpha (e_1 - e_0) b_1 = \alpha b_1$, and so, $\alpha u_1 = 0 = \alpha v_1$, which implies that $\alpha e_1 = 0$.

Continue to get $\alpha e_i = 0$ for i = 0, 1, ..., n. But we have also $(1 - e_n) \in I$, and so $0 = \alpha(1 - e_n) = \alpha - \alpha e_n = \alpha$.

Thus, $Ann(\beta_0, \gamma_0) = \{0\}$, and since R has property A, we must have I = (β_0, γ_0) a regular ideal in R.

Using Lemma 2.2, we get that $(p_n(X), q_n(X))$ is a regular ideal in $R[x]/(x^{n+1})$, and so, $R[x]/(x^{n+1})$ is an EM-Hermite ring.

- (2) \Rightarrow (3) The result is clear since R(+)R is isomorphic to $R[x]/(x^2)$.
- $(3) \Rightarrow (1)$ Assume S = R(+)R is an EM-Hermite ring. Let $b \in Z(R) \setminus \{0\}$. Then it suffices to show that $Ann_R(b)$ is generated by an idempotent and hence R is a PP-ring.

Now, let $(0,1), (b,0) \in S$. Since S is an EM-Hermite ring, there exist elements $(n_1, m_1), (n_2, m_2), (\alpha, \beta) \in S$ such that

$$(0,1)=(n_1,m_1)(\alpha,\beta),$$

$$(b,0) = (n_2, m_2)(\alpha, \beta),$$

where the ideal $(n_1, m_1)S + (n_2, m_2)S \subsetneq Z(S)$. This implies that

$$n_1\alpha=0,$$

$$n_1\beta + m_1\alpha = 1$$
,

$$n_2\alpha = b,$$

$$n_2\beta + m_2\alpha = 0.$$

Therefore,

$$b = b1 = b(n_1\beta + m_1\alpha) = bn_1\beta + bm_1\alpha = (n_2\alpha)n_1\beta + bm_1\alpha = 0 + bm_1\alpha.$$

Thus $Ann_R(m_1\alpha) \subseteq Ann_R(b)$. Also note that

$$(m_1\alpha)^2 = (m_1\alpha)^2 + \beta m_1(0) = (m_1\alpha)^2 + \beta m_1(n_1\alpha)$$

= $m_1\alpha(m_1\alpha + n_1\beta) = m_1\alpha(1) = m_1\alpha$.

Now, let $d \in Ann_R(b)$. Then

$$(d\alpha m_1)n_1 = dm_1(\alpha n_1) = dm_1(0) = 0,$$

$$(d\alpha m_1)n_2 = dm_1(\alpha n_2) = dm_1b = (db)m_1 = 0,$$

Thus $d\alpha m_1 \in Ann_R(n_1) \cap Ann_R(n_2)$, and so we have

$$(0, d\alpha m_1) \in Ann_S(n_1, m_1) \cap Ann_S(n_2, m_2) = \{(0, 0)\}.$$

Hence, $d \in Ann_R(\alpha m_1)$, and so $Ann_R(b) = Ann_R(\alpha m_1) = (1 - \alpha m_1)R$, is generated by an idempotent.

To clarify the above proof, we give the following example.

Example 2.4. The ring $\mathbb{Z}_{10}[x]/(x^4)$ is an EM-Hermite ring, since \mathbb{Z}_{10} is a PP-ring.

Let
$$a(X) = 6 + 4X + 5X^2 + 8X^3$$
, $b(X) = 4 + 6X + 7X^2 + 9X^3 \in \mathbb{Z}_{10}[x]/(x^4)$.

Writing $a_i = u_i r_i$, $b_i = v_i s_i$, with u_i and v_i are idempotents, r_i and s_i are regular, and $1 - e_i = \prod_{j=0}^{i} (1 - u_j)(1 - v_j)$. Thus we have:

i	a_i	u_i	b_i	v_i	e_i
0	6	6	4	6	6
1	4	6	6	6	6
2	5	5	7	1	1
3	8	6	9	1	1

Now let

$$p_3(X) = [a_0 + (e_1 - e_0)a_1 + (e_2 - e_1)a_2 + (e_3 - e_2)a_3 + (1 - e_3)]$$

$$+ [a_1 + (e_1 - e_0)a_2 + (e_2 - e_1)a_3 + (1 - e_3)]X$$

$$+ [a_2 + (e_1 - e_0)a_3 + (1 - e_3)]X^2 + a_3X^3.$$

Then $p_3(X) = 1 + 4X + 5X^2 + 8X^3$.

$$q_3(X) = [b_0 + (e_1 - e_0)b_1 + (e_2 - e_1)b_2 + (e_3 - e_2)b_3 + 1 - e_3]$$

+ $[b_1 + (e_1 - e_0)b_2 + (e_2 - e_1)b_3 + (1 - e_3)]X$
+ $[b_2 + (e_1 - e_0)b_3 + (1 - e_3)]X^2 + b_3X^3$.

Then $q_3(X) = 9 + X + 7X^2 + 9X^3$.

$$d_3(X) = e_0 + (e_1 - e_0)X + [(e_0 - e_1) + (e_2 - e_1)]X^2 + [(e_1 - e_0) + (e_3 - e_2)]X^3.$$

Then $d_3(X) = 6 + 5X^2$.

Simple computations yield $a(X) = p_3(X)d_3(X), b(X) = q_3(X)d_3(X)$. Now, the ideal $(\alpha_0, \beta_0)\mathbb{Z}_{10} = (1, 9)\mathbb{Z}_{10} = \mathbb{Z}_{10}$. Hence, the ideal

$$(p_3(X), q_3(X))\mathbb{Z}_{10}[x]/(x^4) = \mathbb{Z}_{10}[x]/(x^4)$$

is regular as required.

It was shown in [4] that if R is Noetherian, then R is generalized morphic if and only if it is an EM-ring if and only if it is an EM-Hermite ring. While if R was not Noetherian, then the result is false. Now we answer the question raised in [3] concerning the case at which $R[x]/(x^{n+1})$ is an EM-ring, and we give more equivalent conditions to Proposition 1.2 above.

Theorem 2.5. The following statements are equivalent for a ring R:

- (1) $R[x]/(x^{n+1})$ is a generalized morphic ring for each $n \in \mathbb{N}$.
- (2) $R[x]/(x^{n+1})$ is an EM-Hermite ring for each $n \in \mathbb{N}$.
- (3) $R[x]/(x^{n+1})$ is an EM-ring for each $n \in \mathbb{N}$.
- (4) R(+)R is a generalized morphic ring.
- (5) R(+)R is an EM-Hermite ring.
- (6) R(+)R is an EM-ring.
- (7) R is a PP-ring.

Proof. For the equivalence of (1), (4), (6) and (7), see [3].

The equivalence of (2), (5) and (7) follows from Theorem 2.3.

$$(2) \Rightarrow (3) \Rightarrow (6)$$
 are clear.

References

- [1] E. Abuosba and M. Ghanem, Annihilating content in polynomial and power series rings, To appear in J. Korean Math. Soc.
- [2] S. Endo, Note on p.p. rings. (A supplement to Hattori's paper), Nagoya Math. J. 17 (1960), 167-170. http://projecteuclid.org/euclid.nmj/1118800460
- [3] M. Ghanem and E. Abu Osba, Some extensions of generalized morphic rings and EMrings, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 26 (2018), no. 1, 111-123. https: //doi.org/10.2478/auom-2018-0007
- [4] _____, EM-Hermite rings, Submitted.
- [5] T.-K. Lee and Y. Zhou, Morphic rings and unit regular rings, J. Pure Appl. Algebra 210 (2007), no. 2, 501–510. https://doi.org/10.1016/j.jpaa.2006.10.005
- [6] ______, Regularity and morphic property of rings, J. Algebra 322 (2009), no. 4, 1072–1085. https://doi.org/10.1016/j.jalgebra.2009.04.046
- [7] H. Zhu and N. Ding, Generalized morphic rings and their applications, Comm. Algebra 35 (2007), no. 9, 2820–2837. https://doi.org/10.1080/00927870701354017

HIBA ABDELKARIM
THE UNIVERSITY OF JORDAN
SCHOOL OF SCIENCE
MATHEMATICS DEPARTMENT
AMMAN 11942, JORDAN

Email address: hiba_adel2010@yahoo.com

EMAD ABUOSBA
THE UNIVERSITY OF JORDAN
SCHOOL OF SCIENCE
MATHEMATICS DEPARTMENT
AMMAN 11942, JORDAN

 $Email\ address: {\tt eabuosba@ju.edu.jo}$

MANAL GHANEM
THE UNIVERSITY OF JORDAN
SCHOOL OF SCIENCE
MATHEMATICS DEPARTMENT
AMMAN 11942, JORDAN
Email address: m.ghanem@ju.edu.jo