DOI QR코드

DOI QR Code

Derivation and verification of electrical resistivity theory for surrounding ground condition prediction of TBM

TBM 주변 지반상태예측을 위한 전기비저항 이론식 유도 및 검증

  • Hong, Chang-Ho (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Lee, Minhyeong (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Cho, Gye-Chun (Dept. of Civil and Environmental Engineering, KAIST)
  • 홍창호 (한국과학기술원 건설및환경공학과) ;
  • 이민형 (한국과학기술원 건설및환경공학과) ;
  • 조계춘 (한국과학기술원 건설및환경공학과)
  • Received : 2020.01.02
  • Accepted : 2020.01.10
  • Published : 2020.01.31

Abstract

Since the depth of tunneling with tunnel boring machine (TBM) becomes deeper and deeper, the expense for site investigation for coring and geophysical survey increases to obtain the sufficient accuracy. The tunnel ahead prediction methods have been introduced to overcome this limitation in the stage of site investigation. Probe drilling can obtain the core and borehole images from a borehole. However, the space in TBM for the probe drilling equipment is restricted and the core from probe drilling cannot reflect the whole tunnel face. Seismic methods such as tunnel seismic prediction (TSP) can forecast over 100 m ahead from the tunnel face though the signal is usually generated using the explosive which can affect the stability of segments and backfill grout. Electromagnetic methods such as tunnel electrical resistivity prospecting system (TEPS) offer the exact prediction for a conductive zone such as water-bearing zone. However, the number of electrodes installed for exploration is limited in small diameter TBM and finally the reduction of prediction ranges. In this study, the theoretical equations for the electrical resistivity survey whose electrodes are installed in the face and side of TBM to minimize the installed electrodes on face. The experimental tests were conducted to verify the derived equations.

국내에서 TBM 공법을 활용한 터널건설 시 점차 건설심도가 깊어지고 있으며, 이로 인해 상부 지반조사 단계에서 충분한 예측 정확도를 획득하기 위해서는 시추조사 및 물리탐사 비용이 증가하게 된다. 이러한 문제를 극복하기 위해 터널 시공 중 터널 굴착면 전방 예측을 위한 방법들이 제시되었다. 프로브 드릴링을 활용한 굴착면 전방 예측은 코어회수, 시추공 내부 이미지 등을 활용할 수 있는 장점이 있지만 실제 TBM 내에 설치가 어렵고 터널 막장 전체가 아닌 국부적인 지반만을 파악할 수 있다. TSP 등 탄성파를 활용한 방법은 100 m 이상의 긴 탐사거리를 가지지만 신호발생을 위해 발파를 사용하므로 세그먼트 라이닝, 백필 등의 안정성에 영향을 미칠 수 있다. TEPS를 포함한 전자기파 탐사는 지하수 층 등 전도성 있는 이상대를 파악하는 데 적합하지만 소구경 TBM에 설치할 수 있는 전극의 개수가 한정적이며 이는 탐사 범위의 감소 등을 야기한다. 본 연구에서는 전기비저항 탐사 시 굴착면에 설치되는 전극의 개수를 최소화하기 위해 TBM의 굴착면과 측면에 전극이 설치되었을 때에 대한 탐사 이론식을 제시하고 실내실험을 통해 검증하였다.

Keywords

References

  1. Glover, P.W.J., Hole, M.J., Pous, J. (2000), "A modified Archie's law for two conducting phases", Earth and Planetary Science Letters, Vol. 180, No. 3-4, pp. 369-383. https://doi.org/10.1016/S0012-821X(00)00168-0
  2. Hong, C.H., Chong, S.H., Cho, G.C. (2019a), "Theoretical study on geometries of electrodes in laboratory electrical resistivity measurement", Applied Sciences, Vol. 9, No. 19, 4167. https://doi.org/10.3390/app9194167
  3. Hong, C.H., Chong, S.H., Hong, E.S., Cho, G.C., Kwon, T.H. (2019b), "Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 2, pp. 267-278. https://doi.org/10.9711/KTAJ.2019.21.2.267
  4. Jung, H.S., Choi, J.M., Chun, B.S., Park, J.S., Lee, Y.J. (2011), "Causes of reduction in shield TBM performance - A case study in Seoul", Tunnelling and Underground Space Technology, Vol. 26, No. 3, pp. 453-461. https://doi.org/10.1016/j.tust.2011.01.001
  5. Kim, K.S., Kim, J.H., Jeong, L.C., Lee, I.M., Cho, G.C. (2015), "Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 393-401. https://doi.org/10.9711/KTAJ.2015.17.3.393
  6. Li, S., Liu, B., Xu, X., Nie, L., Liu, Z., Song, J., Sun, H., Chen, L., Fan, K. (2017), "An overview of ahead geological prospecting in tunneling", Tunnelling and Underground Space Technology, Vol. 63, Supplement C, pp. 69-94. https://doi.org/10.1016/j.tust.2016.12.011
  7. Ministry of Land Transportation (2014), Underground land use compensation criteria for railway construction, Notice No. 2014-104.
  8. Roy, A., Apparao, A. (1971), "Depth of investigation in direct current methods", Geophysics, Vol. 36, No. 5, pp. 943-959. https://doi.org/10.1190/1.1440226
  9. Ryu J., Park, J., Lee, S.W., Lee, I.M., Kim, B.K. (2018), "Forward probing utilizing electrical resisivity and induced polarization for predicting mixed-ground ahead of TBM tunnel face", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 1, pp. 55-72. https://doi.org/10.9711/KTAJ.2018.20.1.055
  10. Schaeffer, K., Mooney, M.A. (2016), "Examining the influence of TBM-ground interaction on electrical resistivity imaging ahead of the TBM", Tunnelling and Underground Space Technology, Vol. 58, pp. 82-98. https://doi.org/10.1016/j.tust.2016.04.003