DOI QR코드

DOI QR Code

Material Properties Evaluation of Cement Mortar Mixed with Organic/Inorganic Combined Water-repellent

유/무기 복합 발수제를 혼입한 모르타르의 재료특성 평가

  • 김완수 (한양대학교 대학원 스마트시티공학과) ;
  • 윤창복 (한양대학교 대학원 건축시스템공학과) ;
  • 조인성 (한양대학교 ERICA) ;
  • 이한승 (한양대학교 ERICA 건축학부)
  • Received : 2020.10.07
  • Accepted : 2020.12.18
  • Published : 2020.12.31

Abstract

When the concrete surface layer is damaged, The method of impregnating the concrete surface with a water repellent cannot secure the expected durability. Recently, various waterproofing and water-repellent materials were mixed into concrete or mortar to secure water repellency even inside cracks, but compressive strength was greatly reduced. In order to overcome the decrease in compressive strength, there has not yet been a study using the merits of organic and inorganic materials at the same time, so in this study, the physical properties and water repellency performance were evaluated by mixing an organic/inorganic composite water repellent appropriately mixed with an organic and inorganic material into the mortar. When mixed with organic/inorganic water repellent, the flow and air content were reduced by about 10% and 50% compared to the Liquid specimen. In the case of the P6L1 specimen, it was confirmed that the compressive strength decreased by about 3.5% compared to the non-mixed mortar at 39.5 MPa, the same as the existing water repellent, Powder. Water-repellent performance The organic-inorganic composite water repellent mixture specimen confirmed higher water repellency than the existing water repellent mixture powder, and the chloride penetration resistance evaluation result showed that the organic-inorganic composite water repellent mixture specimen reduced the passing charge by about 45% compared to the non-mixed mortar. In summary, it is judged that the P5L1 organic/inorganic composite water repellent mixed with a powder water repellent and a liquid water repellent in a ratio of 5:1 is the most reasonable to prevent the decrease in compressive strength and secure water repellency.

발수제를 콘크리트 표면에 함침시키는 방법은 콘크리트의 균열이 발생할 경우, 기대하는 내구성을 확보할 수가 없다. 최근, 다양한 방수 및 발수 재료들을 콘크리트나 모르타르 내부에 혼입하여 균열 내부에서도 발수성을 확보하였으나 압축강도가 크게 저하되었다. 압축강도 저하를 극복하기 위해 아직까지 유기물과 무기물의 장점들을 동시에 이용한 연구가 없기 때문에, 본 연구에서는 유기물과 무기물을 적절히 혼합한 유무기 복합 발수제를 모르타르에 혼입하여 물리적 특성 및 발수성능을 평가하였다. 유무기 복합 발수제 혼입 시 Liquid 시험체에 비해 플로우 약 10%, 공기량이 약 50% 감소하였으며, P6L1 시험체의 경우, 기존 발수제인 Powder와 같은 39.5MPa로 무혼입 모르타르 대비 약 3.5%의 압축강도 저하를 확인하였다. 발수성능도 유무기 복합 발수제 혼입 시험체가 기존의 발수제 혼입 시험체인 Powder보다 높은 발수성을 확인하였으며, 염화물 침투 저항성 평가결과, 유무기 복합 발수제 혼입 시험체가 무혼입 모르타르 대비 약 45% 통과 전하량이 감소되는 것을 확인하였다. 이상의 실험을 종합하면, Powder 발수제와 Liquid 발수제를 5:1의 비율로 혼입한 P5L1 유무기 복합 발수제가 압축강도 저하 방지 및 발수성능 확보를 위하여 가장 합리적이라고 판단된다.

Keywords

References

  1. Shim, H. B., and Lee, M. S. (2004). An Experimental Study on Water Resistance of Penetrating Water Repellency of Emulsified Silicon Type Exposed In The Outdoor Environment. Journal of the Korea Concrete Institute, 16(4), 477-484 (in Korean). https://doi.org/10.4334/JKCI.2004.16.4.477
  2. Song, H. W., Pack, S. W., and Ann, K. Y. (2007). Time dependent chloride transport evaluation of concrete structures exposed to marine environment. Journal of the Korea Concrete Institute, 19(5), 585-593 (in Korean). https://doi.org/10.4334/JKCI.2007.19.5.585
  3. Shim, S. M. (2002), The study on effect silane solution as protection agent of absorption for the durability in concrete surface layer, thesis, Seoul National University of Science and Technology, 66p (in Korean).
  4. Jang, S. H., Woo, J. T., Nam, Y. H., and Kim, S. S. (2003). Evaluation on Performance of Penetrative Water-repellent for Durability Progress of Concrete Structure. Journal of the Korea Institute for Structural Maintenance and Inspection, 7(1), 289-296 (in Korean).
  5. Zhu, H., Li, Q., Ma, R., Yang, L., Hu, Y., and Zhang, J. (2020). Water-repellent additive that increases concrete cracking resistance in dry curing environments. Construction and Building Materials, 249, 118704. https://doi.org/10.1016/j.conbuildmat.2020.118704
  6. Chari, M. N., Naseroleslami, R., and Shekarchi, M. (2019). The impact of calcium stearate on characteristics of concrete. Asian Journal of Civil Engineering, 20(7), 1007-1020. https://doi.org/10.1007/s42107-019-00161-x
  7. Zhu, Y. G., Kou, S. C., Poon, C. S., Dai, J. G., and Li, Q. Y. (2013). Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cement and Concrete Composites, 35(1), 32-38. https://doi.org/10.1016/j.cemconcomp.2012.08.008
  8. Kim, D. H., Lee, H. N., Hong, S. H., Chun, S. M. and Jeong. Y. (2018), Effect on properties of mortar according to type and amount of water repellent, Proceedings of Journal of Korea Concrete Institute, 30, 475-476 (in Korean).
  9. Maryoto, A. (2017). Resistance of concrete with calcium stearate due to chloride attack tested by accelerated corrosion. Procedia Engineering, 171, 511-516. https://doi.org/10.1016/j.proeng.2017.01.363
  10. Kong, X. M., Liu, H., Lu, Z. B., and Wang, D. M. (2015). The influence of silanes on hydration and strength development of cementitious systems. Cement and Concrete Research, 67, 168-178. https://doi.org/10.1016/j.cemconres.2014.10.008
  11. Lanzon, M., Martinez, E., Mestre, M., and Madrid, J. A. (2017). Use of zinc stearate to produce highly-hydrophobic adobe materials with extended durability to water and acid-rain. Construction and Building Materials, 139, 114-122. https://doi.org/10.1016/j.conbuildmat.2017.02.055
  12. Maryoto, A., Gan, B. S., Hermanto, N. I. S., and Setijadi, R. (2018). The Compressive Strength and Resistivity toward Corrosion Attacks by Chloride Ion of Concrete Containing Type I Cement and Calcium Stearate. International Journal of Corrosion, 2018.
  13. Atla, S. B., Huang, Y. H., Yang, J., Chen, H. J., Kuo, Y. H., Hsu, C. M., Lee, W. C., Chen, C. C., Hsu, D. W. and Chen, C. Y. (2017). Hydrophobic calcium carbonate for cement surface, Crystals, 7(12), 371. https://doi.org/10.3390/cryst7120371
  14. Maranhao, F. L., John, V. M., Loh, K., Pileggi, R. G., De Clercq, H., and Charola, A. E. (2008). The influence of silicone based water repellents as admixtures on the rheological properties of cement slurry. In Hydrophobe V, 5th International Conference on Water Repellent Treatment of Building Materials, Aedificatio, Brussels , 255, 258.
  15. Quraishi, M. A., Kumar, V., Abhilash, P. P., and Singh, B. N. (2011). Calcium stearate: A green corrosion inhibitor for steel in concrete environment. J. Mater. Environ. Sci, 2(4), 365-372.
  16. Naseroleslami, R., and Chari, M. N. (2019). The effects of calcium stearate on mechanical and durability aspects of self-consolidating concretes incorporating silica fume/natural zeolite. Construction and Building Materials, 225, 384-400. https://doi.org/10.1016/j.conbuildmat.2019.07.144
  17. Zhao, T., Wittmann, F. H., Jiang, R., and Li, W. (2011). Application of silane-based compounds for the production of integral water repellent concrete. In HVI, 6th International conference on WR treatment of building materials, 137-144.
  18. Li, W., Wittmann, F. H., Jiang, R., Zhao, T., and Wolfseher, R. (2011). Metal soaps for the production of integral water repellent concrete. In Proceedings of Hydrophobe VI, 6th international conference on water repellent treatment of building materials. Aedificatio Publisher, Freiburg, 145-154.
  19. 浅本晋吾, 古田悠佳, 欒堯, & 米田大樹. (2018). 撥水材を混入したセメント系材料の内部撥水性と材料特性の検討. コンクリート工学論文集, 29, 11-19.
  20. Felekoglu, B. (2012). A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Construction and Building Materials, 28(1), 305-310. https://doi.org/10.1016/j.conbuildmat.2011.07.026