DOI QR코드

DOI QR Code

공공건축물 안전성 평가를 위한 지진가속도 계측자료의 유효성 검증 방법에 대한 연구

A Study on the Validation of Measured Data from the Seismic Accelerometers in the Safety Evaluation System of Public Buildings

  • 장원석 (인하대학교 건축공학과) ;
  • 정성훈 (행정안전부 지진방재관리과)
  • 투고 : 2020.10.22
  • 심사 : 2020.10.30
  • 발행 : 2020.10.30

초록

본 연구에서는 지진가속도계측시스템의 정상 운영여부를 판단하고 지진가속도 계측자료의 유효성을 검증할 수 있는 알고리즘을 개발하기 위하여 현재 운영 중인 공공건축물 지진가속도계측시스템 계측자료를 이용한 조사·분석을 수행하였다. 연구 결과를 통해 시스템에서 생성하는 주요 자료인 실시간 데이터(MMA/sec) 자료와 이벤트 계측자료(MiniSEED)의 생성 절차에서 발생하는 오류와 계측자료 자체의 이상 여부를 감지할 수 있는 알고리즘을 개발하였으며, 오류 유형을 분석하여 계측 데이터 분석을 통한 점검 방향 판단의 기초자료를 마련하였다. 이를 통해 수신/미수신으로 관리되던 지진가속도계측시스템의 점검 여부 및 이상 종류를 판단할 수 있는 가이드라인으로 활용될 수 있을 것으로 기대된다.

In this study, an algorithm was developed to validate the seismic acceleration measurement data of the seismic acceleration measurement system using measurement data from public buildings currently in operation. Through the results of the study, an algorithm was developed to detect errors and abnormalities in the measurement data itself and the process of generating real-time data (MMA/sec) and event measurement data (MiniSEED), which are the main data generated by the system, and the basic data for determining the direction of inspection through measurement data analysis. It is expected that this will be used as a guideline to determine whether or not the seismic acceleration measurement system, which was managed as receiving/not receiving, is inspected and abnormal types of conditions.

키워드

참고문헌

  1. Korea Institute of Geoscience & Mineral Resources (2000), Construction and Operation of Earthquake Research Stations, KR-00-(T)-07 (in Korean).
  2. Jang, J., An, H., Lee, J.H., Shin, S. (2019) Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems, J. Korea Inst. Struct. Maint. & Insp., 23(7), 80-86. https://doi.org/10.11112/JKSMI.2019.23.7.80
  3. Ren, S., He, K., , Girshick, R., and Sun, J. (2017), Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
  4. Korea Construction Standards Center (2018), Korean Design Standard : General Seismic Design(KDS 17 10 00 :2018).
  5. Ministry of Land, Infrastructure and Transport, Korea Agency for Infrastructure Technology Advancement(2016), "건축물 실시간 안전진단을 위한 ICT기반 핵심기술개발 기획연구 최종보고서", 45-46.
  6. IRIS (2014), SEED Reference Manual, SEED Format version 2.4.
  7. NDMI (National Disaster Management Research Institute) (2013), "Development of the Advanced Seismic Acceleration Analysis and Management System", 11-1312184-00007-01 (in Korean).
  8. NDMI (National Disaster Management Research Institute) (2013), "Development of Comprehensive Management and Information Service System for Seismic Acceleration Response Signal of Public Buildings", 11-1312184-00039-01 (in Korean)
  9. NDMI (National Disaster Management Research Institute) (2012), "Emergency Integrity Assessment Program for a Building using Structural Seismic Response", 11-1311526-000069-01 (in Korean)
  10. US Geological Survey, California Geological Survey, CESMD; Center for Engineering Strong Motion Data, http://www.strongmotioncenter.org/
  11. Korea Meteorological Administration, NECIS; National Earthquake Comprehensive Information System, http://necis.kma.go.kr/