References
- Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R. 2019. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci. Rep. 9: 5855. https://doi.org/10.1038/s41598-019-41899-3
- Rao K, Mohapatra M, Anand S, Venkateswarlu P. 2010. Review on cadmium removal from aqueous solutions. Int. J. Eng. Sci. Technol. 2.
- Toth G, Hermann T, Da Silva M, Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 88: 299-309. https://doi.org/10.1016/j.envint.2015.12.017
- Yang X, Long X, Ye H, He Z, Calvert D, Stoffella P. 2004. Cadmium tolerance and hyperaccumulation in a new Znhyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 259: 181-189. https://doi.org/10.1023/B:PLSO.0000020956.24027.f2
- Sabiha J, Mehmood T, Chaudhry MM, Tufail M, Irfan N. 2009. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem. J. 91: 94-99. https://doi.org/10.1016/j.microc.2008.08.009
- Su C. 2014. A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environmental Skeptics Critics. 3: 24-38.
- Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88: 1707-1719. https://doi.org/10.1016/j.biochi.2006.07.003
- Aoshima K. 2012. [Itai-itai disease: cadmium-induced renal tubular osteomalacia]. Nihon Eiseigaku Zasshi. 67: 455-463. https://doi.org/10.1265/jjh.67.455
- Mulligan CN, Yong RN, Gibbs BF. 2001. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater. 85: 145-163. https://doi.org/10.1016/S0304-3894(01)00226-6
- Gu H-H, Qiu H, Tian T, Zhan S-S, Chaney RL, Wang S-Z, et al. 2011. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83: 1234-1240. https://doi.org/10.1016/j.chemosphere.2011.03.014
- Rajkumar M, Freitas H. 2008. Influence of metal resistantplant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71: 834-842. https://doi.org/10.1016/j.chemosphere.2007.11.038
- Rogalla H, Romheld V. 2002. Role of leaf apoplast in siliconmediated manganese tolerance of Cucumis sativus L. Plant Cell Environ. 25: 549-555. https://doi.org/10.1046/j.1365-3040.2002.00835.x
- Liang Y, Yang C, Shi H. 2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J. Plant Nutr. 24: 229-243. https://doi.org/10.1081/pln-100001384
- Neumann D, Zur Nieden U. 2001. Silicon and heavy metal tolerance of higher plants. Phytochemistry 56: 685-692. https://doi.org/10.1016/S0031-9422(00)00472-6
- Nowakowski W, Nowakowska J. 1997. Silicon and copper interaction in the growth of spring wheat seedlings. Biologia Plantarum 39: 463-466. https://doi.org/10.1023/A:1001009100026
- Chen H, Zheng C, Tu C, Shen Z. 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41: 229-234. https://doi.org/10.1016/S0045-6535(99)00415-4
- Wang L, Wang Y, Chen Q, Cao W, Li M, Zhang F. 2000. Silicon induced cadmium tolerance of rice seedlings. J. Plant Nutr. 23: 1397-1406. https://doi.org/10.1080/01904160009382110
- Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J. 2005. Siliconmediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66: 1551-1559. https://doi.org/10.1016/j.phytochem.2005.05.006
- Shi G, Cai Q, Liu C, Wu L. 2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul. 61: 45-52. https://doi.org/10.1007/s10725-010-9447-z
- Tubana BS, Babu T, Datnoff LE. 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci. 181: 393-411. https://doi.org/10.1097/ss.0000000000000179
- Kumar A, Bahadur I, Maurya B, Raghuwanshi R, Meena V, Singh D, et al. 2015. Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J. Pure Appl. Microbiol. 9: 715-724.
- Nriagu JO, Moore P. 2012. Phosphate minerals, pp, 134-402. Ed. Springer Science & Business Media.
- Villalba G, Liu Y, Schroder H, Ayres RU. 2008. Global phosphorus flows in the industrial economy from a production perspective. J. Ind. Ecology. 12: 557-569. https://doi.org/10.1111/j.1530-9290.2008.00050.x
- Chowdhury RB, Moore GA, Weatherley AJ, Arora M. 2017. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 140: 945-963. https://doi.org/10.1016/j.jclepro.2016.07.012
- Etesami H, Maheshwari DK. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 156: 225-246. https://doi.org/10.1016/j.ecoenv.2018.03.013
- Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, et al. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 104: 285-293. https://doi.org/10.1016/j.ecoenv.2014.03.008
- Gupta P, Kumar V, Usmani Z, Rani R, Chandra A. 2018. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil. Chemosphere 192: 318-327. https://doi.org/10.1016/j.chemosphere.2017.10.164
- Adesemoye AO, Kloepper JW. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 85: 1-12. https://doi.org/10.1007/s00253-009-2196-0
- Mukamuhirwa A, Persson Hovmalm H, Bolinsson H, Ortiz R, Nyamangyoku O, Johansson E. 2019. Concurrent drought and temperature stress in rice-a possible result of the predicted climate change: effects on yield attributes, eating characteristics, and health promoting compounds. Int. J. Environ. Res. Public Health 16: 1043. https://doi.org/10.3390/ijerph16061043
- Sun S, Zhou X, Li Z, Zhuang P. 2019. In vitro and in vivo testing to determine Cd bioaccessibility and bioavailability in contaminated rice in relation to mouse chow. Int. J. Environ. Res. Public Health 16: 871. https://doi.org/10.3390/ijerph16050871
- Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z. 2013. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol. Environ. Saf. 96: 242-249. https://doi.org/10.1016/j.ecoenv.2013.07.006
- Rizvi A, Khan MS. 2017. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185: 942-952. https://doi.org/10.1016/j.chemosphere.2017.07.088
- Khan AR, Park G-S, Asaf S, Hong S-J, Jung BK, Shin J-H. 2017. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS One 12: e0171534. https://doi.org/10.1371/journal.pone.0171534
- Sharma RK, Archana G. 2016. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl. Soil Ecol. 107: 66-78. https://doi.org/10.1016/j.apsoil.2016.05.009
- Lee K-E, Adhikari A, Kang S-M, You Y-H, Joo G-J, Kim J-H, et al. 2019. Isolation and characterization of the high silicate and phosphate solubilizing novel strain enterobacter ludwigii GAK2 that promotes growth in rice plants. Agronomy 9: 144. https://doi.org/10.3390/agronomy9030144
- Kalra YP. 1995. Determination of pH of soils by different methods: collaborative study. J. AOAC Int. 78: 310-324. https://doi.org/10.1093/jaoac/78.2.310
- Kang S-M, Waqas M, Shahzad R, You Y-H, Asaf S, Khan MA, et al. 2017. Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). Soil Sci. Plant Nutr. 63: 233-241.
- Chan C-X, Teo S-S, Ho C-L, Othman RY, Phang S-M. 2004. Optimisation of RNA extraction from Gracilaria changii (Gracilariales, Rhodophyta). J. Appl. Phycology 16: 297-301. https://doi.org/10.1023/B:JAPH.0000047782.20940.de
- Kim Y-H, Khan AL, Kim D-H, Lee S-Y, Kim K-M, Waqas M, et al. 2014. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14: 13. https://doi.org/10.1186/1471-2229-14-13
- McCloud ES, Baldwin IT. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203: 430-435. https://doi.org/10.1007/s004250050210
- Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang S-M, et al. 2016. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol. Biochem. 106: 236-243. https://doi.org/10.1016/j.plaphy.2016.05.006
- Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, et al. 2007. An efflux transporter of silicon in rice. Nature 448: 209-212. https://doi.org/10.1038/nature05964
- Tirado R, Allsopp M. 2012. Phosphorus in agriculture: problems and solutions. Greenpeace Research Laboratories Technical Report (Review). 2.
- Walpola BC, & Yoon MH. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. Afr. J. Microbiol. Res. 37: 6600-6605.
- Naureen Z, Aqeel M, Hassan MN, Gilani SA, Bouqellah N, Mabood F, et al. 2015. Isolation and Screening of Silicate Bacteria from Various Habitats for Biological Control of Phytopathogenic Fungi. American J. Plant Sci. 6: 2850-2859. https://doi.org/10.4236/ajps.2015.618282
- Das P, Samantaray S, Rout G. 1997. Studies on cadmium toxicity in plants: a review. Environ. Pollut. 98: 29-36. https://doi.org/10.1016/S0269-7491(97)00110-3
- Metwally A, Safronova VI, Belimov AA, Dietz K-J. 2004. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot. 56: 167-178. https://doi.org/10.1093/jxb/eri017
- Rajkumar M, Sandhya S, Prasad MNV, Freitas H. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30: 1562-1574. https://doi.org/10.1016/j.biotechadv.2012.04.011
- Lee KE. 2015. Silicon absorption promoting effect of rice by Enterobacter ludwigii GAK2. Master's Thesis. Kyungpook National University.
- Meharg A, Cairney JW. 1999. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv. Ecol. Res. 30: 69-112. https://doi.org/10.1016/S0065-2504(08)60017-3
- Zaidi S, Usmani S, Singh BR, Musarrat J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
- Madhaiyan M, Poonguzhali S, Sa T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69: 220-228. https://doi.org/10.1016/j.chemosphere.2007.04.017
- Kang SM, Khan AL, Waqas M, You YH, Hamayun M, Joo GJ, et al. 2015. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. Eur.J. Soil Biol. 68: 85-93. https://doi.org/10.1016/j.ejsobi.2015.02.005
- TRAN TA, Popova LP. 2013. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turkish J. Botany 37: 1-13.
- Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang Y-C. 2016. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech. 6: 242.
- Naidu R, Bolan N, Kookana RS, Tiller K. 1994. Ionicstrength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45: 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
- Li Z, Li L, Chen GPJ. 2005. Bioavailability of Cd in a soil-rice system in China: soil type versus genotype effects. Plant Soil 271: 165-173. https://doi.org/10.1007/s11104-004-2296-7
Cited by
- Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective vol.36, pp.7, 2020, https://doi.org/10.1007/s11274-020-02870-x
- Plant growth‐promoting endophytic bacteria augment growth and salinity tolerance in rice plants vol.22, pp.5, 2020, https://doi.org/10.1111/plb.13124
- The Halotolerant Rhizobacterium— Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean ( Glycine max L.) vol.8, pp.9, 2020, https://doi.org/10.3390/microorganisms8091256
- Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress vol.20, 2020, https://doi.org/10.1186/s12866-020-01822-7
- Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L. vol.11, pp.3, 2020, https://doi.org/10.3390/agriculture11030272
- Phosphate-Solubilizing Enterobacter ludwigii AFFR02 and Bacillus megaterium Mj1212 Rescues Alfalfa’s Growth under Post-Drought Stress vol.11, pp.6, 2020, https://doi.org/10.3390/agriculture11060485
- Influence of the Rhizobacterium Rhodobacter sphaeroides KE149 and Biochar on Waterlogging Stress Tolerance in Glycine max L. vol.8, pp.9, 2020, https://doi.org/10.3390/environments8090094
- Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield vol.796, 2020, https://doi.org/10.1016/j.scitotenv.2021.148797
- Pseudomonas sp. TCd-1 significantly alters the rhizosphere bacterial community of rice in Cd contaminated paddy field vol.290, 2020, https://doi.org/10.1016/j.chemosphere.2021.133257