DOI QR코드

DOI QR Code

Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death

  • Moon, Ji Eun (Department of Food and Biotechnology, Korea University) ;
  • Heo, Wan (Institutes of Natural Sciences, Korea University) ;
  • Lee, Sang Hoon (Department of Food and Biotechnology, Korea University) ;
  • Lee, Suk Hee (Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine) ;
  • Lee, Hong Gu (Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University) ;
  • Lee, Jin Hyup (Department of Food and Biotechnology, Korea University) ;
  • Kim, Young Jun (Department of Food and Biotechnology, Korea University)
  • Received : 2019.06.18
  • Accepted : 2019.09.18
  • Published : 2020.01.28

Abstract

Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.

Keywords

References

  1. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. 2013. Health benefits of probiotics: a review. ISRN Nutr. 2013: 481651. https://doi.org/10.5402/2013/481651
  2. Czerucka D, Piche T, Rampal P. 2007. Review article: yeast as probiotics -- Saccharomyces boulardii. Aliment. Pharmacol. Ther. 26: 767-778. https://doi.org/10.1111/j.1365-2036.2007.03442.x
  3. Dinleyici EC, Eren M, Ozen M, Yargic ZA, Vandenplas Y. 2012. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin. Biol. Ther. 12: 395-410. https://doi.org/10.1517/14712598.2012.664129
  4. Pozzoni P, Riva A, Bellatorre AG, Amigoni M, Redaelli E, Ronchetti A, et al. 2012. Saccharomyces boulardii for the prevention of antibiotic-associated diarrhea in adult hospitalized patients: a single-center, randomized, double-blind, placebocontrolled trial. Am. J. Gastroenterol. 107: 922-931. https://doi.org/10.1038/ajg.2012.56
  5. Sudha MR, Bhonagiri S, Kumar MA. 2012. Oral consumption of potential probiotic Saccharomyces boulardii strain Unique 28 in patients with acute diarrhoea: a clinical report. Benef. Microbes 3: 145-150. https://doi.org/10.3920/BM2011.0055
  6. Surawicz CM, McFarland LV, Greenberg RN, Rubin M, Fekety R, Mulligan ME, et al. 2000. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin. Infect. Dis. 31: 1012-1017. https://doi.org/10.1086/318130
  7. Tung JM, Dolovich LR, Lee CH. 2009. Prevention of Clostridium difficile infection with Saccharomyces boulardii: a systematic review. Can. J. Gastroenterol. 23: 817-821. https://doi.org/10.1155/2009/915847
  8. Correa NB, Penna FJ, Lima FM, Nicoli JR, Filho LA. 2011. Treatment of acute diarrhea with Saccharomyces boulardii in infants. J. Pediatr. Gastroenterol. Nutr. 53: 497-501. https://doi.org/10.1097/mpg.0b013e31822b7ab0
  9. Dinleyici EC, Eren M, Yargic ZA, Dogan N, Vandenplas Y. 2009. Clinical efficacy of Saccharomyces boulardii and metronidazole compared to metronidazole alone in children with acute bloody diarrhea caused by amebiasis: a prospective, randomized, open label study. Am. J. Trop. Med. Hyg. 80: 953-955. https://doi.org/10.4269/ajtmh.2009.80.953
  10. Kelesidis T, Pothoulakis C. 2012. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap. Adv. Gastroenterol. 5: 111-125. https://doi.org/10.1177/1756283X11428502
  11. McFarland LV. 2010. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 16: 2202-2222. https://doi.org/10.3748/wjg.v16.i18.2202
  12. Vandenplas Y, Brunser O, Szajewska H. 2009. Saccharomyces boulardii in childhood. Eur. J. Pediatr. 168: 253-265. https://doi.org/10.1007/s00431-008-0879-7
  13. Jamieson DJ. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  14. Mariani D, Mathias CJ, da Silva CG, Herdeiro Rda S, Pereira R, Panek AD, et al. 2008. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by $H_{2}O_{2}$ during growth of Saccharomyces cerevisiae. Redox Rep. 13: 246-254. https://doi.org/10.1179/135100008x309028
  15. Perrone GG, Tan SX, Dawes IW. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
  16. Jamieson DJ. 1995. The effect of oxidative stress on Saccharomyces cerevisiae. Redox Rep. 1: 89-95. https://doi.org/10.1080/13510002.1995.11746964
  17. Benaroudj N, Lee DH, Goldberg AL. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276: 24261-24267. https://doi.org/10.1074/jbc.M101487200
  18. Herdeiro RS, Pereira MD, Panek AD, Eleutherio EC. 2006. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Biophys. Acta 1760: 340-346. https://doi.org/10.1016/j.bbagen.2006.01.010
  19. Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M. 2018. Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr. Microbiol. 75: 519-530. https://doi.org/10.1007/s00284-017-1412-x
  20. Cascio V, Gittings D, Merloni K, Hurton M, Laprade D, Austriaco N. 2013. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death. BMC Microbiol. 13: 35. https://doi.org/10.1186/1471-2180-13-35
  21. Dani C, Bonatto D, Salvador M, Pereira MD, Henriques JA, Eleutherio E. 2008. Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J. Agric. Food Chem. 56: 4268-4272. https://doi.org/10.1021/jf800752s
  22. Martorell P, Forment JV, de Llanos R, Monton F, Llopis S, Gonzalez N, et al. 2011. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J. Agric. Food Chem. 59: 2077-2085. https://doi.org/10.1021/jf104217g
  23. Mendes V, Vilaca R, de Freitas V, Ferreira PM, Mateus N, Costa V. 2015. Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxid. Med. Cell. Longev. 2015: 782504. https://doi.org/10.1155/2015/782504
  24. Luo Y, Li WM, Wang W. 2008. Trehalose: Protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ. Exp. Bot. 63: 378-384. https://doi.org/10.1016/j.envexpbot.2007.11.016
  25. Gao Z, Wang H, Zhang B, Wu X, Zhang Y, Ge P, Chi G, Liang J. 2018. Trehalose inhibits $H_{2}O_{2}$-induced autophagic death in dopaminergic SH-SY5Y cells via mitigation of ROS-dependent endoplasmic reticulum stress and AMPK activation. Int. J. Med. Sci. 15: 1014-1024. https://doi.org/10.7150/ijms.25656
  26. Mazzoni C, Falcone C. 2008. Caspase-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1320-1327. https://doi.org/10.1016/j.bbamcr.2008.02.015
  27. Millard PJ, Roth BL, Thi HP, Yue ST, Haugland RP. 1997. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63: 2897-2905. https://doi.org/10.1128/aem.63.7.2897-2905.1997
  28. Madeo F , Frohlich E, L igr M, G rey M, S igrist S J, Wolf DH, et al. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757-767. https://doi.org/10.1083/jcb.145.4.757
  29. Farrugia G, Balzan R. 2012. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2: 64. https://doi.org/10.3389/fonc.2012.00064
  30. Izawa S, Inoue Y, Kimura A. 1995. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368: 73-76. https://doi.org/10.1016/0014-5793(95)00603-7
  31. Madeo F, Frohlich E, Frohlich KU. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734. https://doi.org/10.1083/jcb.139.3.729
  32. Madeo F, Carmona-Gutierrez D, Ring J, Buttner S, Eisenberg T, Kroemer G. 2009. Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem. Biophys. Res. Commun. 382: 227-231. https://doi.org/10.1016/j.bbrc.2009.02.117
  33. Burhans WC, Weinberger M, Marchetti MA, Ramachandran L, D'Urso G, Huberman JA. 2003. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227-243. https://doi.org/10.1016/j.mrfmmm.2003.08.019
  34. Lefevre S, Sliwa D, Auchere F, Brossas C, Ruckenstuhl C, Boggetto N, et al. 2012. The yeast metacaspase is implicated in oxidative stress response in frataxin-deficient cells. FEBS Lett. 586: 143-148. https://doi.org/10.1016/j.febslet.2011.12.002
  35. Treml J, Smejkal K. 2016. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 15: 720-738. https://doi.org/10.1111/1541-4337.12204

Cited by

  1. Trehalose alleviates the phenotype of Machado–Joseph disease mouse models vol.18, pp.1, 2020, https://doi.org/10.1186/s12967-020-02302-2
  2. Characterisitcs of Saccharomyces boulardii for reducing ammonia emission from livestock manure vol.64, pp.1, 2021, https://doi.org/10.1186/s13765-021-00600-x
  3. Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? vol.175, 2020, https://doi.org/10.1016/j.phrs.2021.106022