References
- Ko HR, Kim BY, Oh WK, Kang DO, Lee HS, Koshino H, et al. 2000. CRM646-A and -B, novel fungal metabolites that inhibit heparinase. J. Antibiot. 53: 211-214. https://doi.org/10.7164/antibiotics.53.211
- Wang P, Zhang Z, Yu B. 2005. Total synthesis of CRM646-A and -B, two fungal glucuronides with potent heparinase inhibition activities. J. Org. Chem. 70: 8884-8889. https://doi.org/10.1021/jo051384k
- Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, et al. 2010. Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem. Biol. 17: 460-470. https://doi.org/10.1016/j.chembiol.2010.03.016
- Muroi M, Futamura Y, Osada H. 2016. Integrated profiling methods for identifying the targets of bioactive compounds: morphobase and ChemProteoBase. Nat. Prod. Rep. 33: 621-625. https://doi.org/10.1039/c5np00106d
- Muroi M, Osada H. 2019. Proteomic profiling for target identification of biologically active small molecules using 2D DIGE. Methods Mol. Biol. 1888: 127-139. https://doi.org/10.1007/978-1-4939-8891-4_7
- Asami Y, Jang JH, Oh H, Sohn JH, Kim JW, Moon DO, et al. 2012. Violaceols function as actin inhibitors inducing cell shape elongation in fibroblast cells. Biosci. Biotechnol. Biochem. 76: 1431-1437. https://doi.org/10.1271/bbb.120074
-
Arachiche A, Badirou I, Dachary-Prigent J, Garcin I, Geldwerth-Feniger D, Kerbiriou-Nabias D. 2008. ERK activation by
$Ca^{2+}$ ionophores depends on$Ca^{2+}$ entry in lymphocytes but not in platelets, and does not conduct membrane scrambling. Cell Mol. Life Sci. 65: 3861-3871. https://doi.org/10.1007/s00018-008-8339-0 - Kirchhoff C, Cypionka H. 2017. Propidium ion enters viable cells with high membrane potential during live-dead staining. J. Microbiol. Methods. 142: 79-82. https://doi.org/10.1016/j.mimet.2017.09.011
- Signoretto E, Zierle J, Bhuyan AA, Castagna M, Lang F. 2016. Ceranib-2-induced suicidal erythrocyte death. Cell Biochem. Funct. 34: 359-366. https://doi.org/10.1002/cbf.3196
- Fei H, Zhao B, Zhao S, Wang Q. 2008. Requirements of calcium fluxes and ERK kinase activation for glucose- and interleukin-1beta-induced beta-cell apoptosis. Mol. Cell Biochem. 315: 75-84. https://doi.org/10.1007/s11010-008-9791-8
- Unal EB, Uhlitz F, Bluthgen N. 2017. A compendium of ERK targets. FEBS Lett. 591: 2607-2615. https://doi.org/10.1002/1873-3468.12740
- Tanimura S, Takeda K. 2017. ERK signalling as a regulator of cell motility. J. Biochem. 162: 145-154. https://doi.org/10.1093/jb/mvx048
- Ishikawa Y, Kitamura M. 1999. Dual potential of extracellular signal-regulated kinase for the control of cell survival. Biochem. Biophys. Res. Commun. 264: 696-701. https://doi.org/10.1006/bbrc.1999.1542
- Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. 2004. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 279: 40419-40430. https://doi.org/10.1074/jbc.M405079200
- Tan Z, Dohi S, Chen J, Banno Y, Nozawa Y. 2002. Involvement of the mitogen-activated protein kinase family in tetracaineinduced PC12 cell death. Anesthesiology 96: 1191-1201. https://doi.org/10.1097/00000542-200205000-00024
Cited by
- Fungal Depsides-Naturally Inspiring Molecules: Biosynthesis, Structural Characterization, and Biological Activities vol.11, pp.10, 2021, https://doi.org/10.3390/metabo11100683