참고문헌
- Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
- Madison LL, Huisman GW. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53. https://doi.org/10.1128/mmbr.63.1.21-53.1999
- Steinbuchel A, Valentin HE. 1995. Diversity of bacterial polyhydroxyalkanoic acid. FEMS Microbiol. Lett. 128: 219-228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
- Steinbuchel A, Fuchtenbusch B. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427. https://doi.org/10.1016/S0167-7799(98)01194-9
- Jendrossek D, Handrick R. 2002. Microbial degradation of polyhydroxyalkanoates. Annu. Rev. Microbiol. 56: 403-432. https://doi.org/10.1146/annurev.micro.56.012302.160838
- Kumar A, Gross RA, Jendrossek D. 2000. Poly(3-hydroxybutyrate)-depolymerase from Pseudomonas lemoignei: Catalysis of Esterifications in Organic Media. J. Org. Chem. 65: 7800-7806. https://doi.org/10.1021/jo000814y
- Lee SJ, Park JP, Park TJ, Lee SY, Lee S, Park JK. 2005. Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal. Chem. 77: 5755-5759. https://doi.org/10.1021/ac0505223
- Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss RI. 1997. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29-34. https://doi.org/10.1038/nbt0197-29
- Chen W, Georgiou G. 2002. Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol. Bioeng. 79: 496-503. https://doi.org/10.1002/bit.10407
- Lee SY, Choi JH, Xu J. 2003. Microbial cell surface display. Trends Biotechnol. 21: 45-52. https://doi.org/10.1016/S0167-7799(02)00006-9
- Benhar I. 2001 Biotechnological applications of phage and cell display. Biotechnol. Adv. 19: 1-33. https://doi.org/10.1016/S0734-9750(00)00054-9
- Smith MR, Khera E, Wen F, 2015. Engineering novel and improved biocatalysts by cell surface display. Ing. Eng. Chem. Res. 54: 4021-4031. https://doi.org/10.1021/ie504071f
- Shimazu M, Mulchandani A, Chen W. 2001. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Prog. 17: 76-80. https://doi.org/10.1021/bp0001563
- Lee SH, Choi J, Han M-J, Choi JH, Lee SY. 2005. Display of lipase on the cell surface of Escherichia coli using OprF as an anchoring motif and its application to enatioselective resolution in organic solvent. Biotechnol. Bioeng. 90: 223-230. https://doi.org/10.1002/bit.20399
- Matsumoto T, Ito M, Fukuda H, Kondo A. 2004. Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl. Microbiol. Biotechnol. 64: 481-485. https://doi.org/10.1007/s00253-003-1486-1
- Hiraishi T, Yamashita K, Sakono M, Nakanishi J, Tan L-T, Sudesh K, et al. 2012. Display of functionally active PHB depolymerase on Escherichia coli cell surface. Macromol. Biosci. 12: 218-224. https://doi.org/10.1002/mabi.201100273
- Tan L-T, Hiraishi T, Sudesh K, Maeda M. 2013. Directed evolution of poly[(R)-3-hydroxybutyrate] depolymerase using cell surface display system: functional importance of asparagine at position 285. Appl. Microbiol. Biotechnol. 97: 4859-4871. https://doi.org/10.1007/s00253-012-4366-8
- Saito T, Suzuki K, Yamamoto J, Fukui T, Miwa K, Tomita K, et al. 1989. Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J. Bacteriol. 171: 184-189. https://doi.org/10.1128/jb.171.1.184-189.1989
- Lee S H , Choi J, P ark SJ, Lee SY, Park BC. 2004. Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis. Appl. Environ. Microbiol. 70: 5074-5080. https://doi.org/10.1128/AEM.70.9.5074-5080.2004
- Schumacher SD, Hannemann F, Teese MG, Bernhardt R, Jose J. 2012. Autodisplay of functional CYP106A2 in Escherichia coli. J. Biotechnol. 161: 104-112. https://doi.org/10.1016/j.jbiotec.2012.02.018
- Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, et al. 2020. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 709: 136138. https://doi.org/10.1016/j.scitotenv.2019.136138
- Lee SH, Lee SY, Park B. 2005. Cell surface display of lipase on the Pseudomonas putida using OprF as an anchoring motif and its biocatalytic applications. Appl. Environ. Microbiol. 71: 8581-8586. https://doi.org/10.1128/AEM.71.12.8581-8586.2005