References
- Lynch KM, Coffey A, Arendt EK. 2018. Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Res. Int. 110: 52-61. https://doi.org/10.1016/j.foodres.2017.03.012
- Cruz AG, Antunes AEC, Sousa ALOP, Faria JA, Saad SMI. 2009. Ice-cream as a probiotic food carrier. Food Res. Int. 42:1233-1239. https://doi.org/10.1016/j.foodres.2009.03.020
- Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W. 2016. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 120: 118-132. https://doi.org/10.1016/j.meatsci.2016.04.004
- Shi H, Chen Z, Kan J. 2016. Progress in research on stress response in Escherichia coli during food processing and storage. Food Sci. 37: 250-257. https://doi.org/10.7506/spkx1002-6630-201602044
- Cacace G, Mazzeo MF, Sorrentino A, Spada V, Malorni A, Siciliano RA. 2010. Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J. Proteomics. 73: 2021-2030. https://doi.org/10.1016/j.jprot.2010.06.011
- Carranza P, Grunau A, Schneider T, Hartmann I, Lehner A, Stephan R, et al. 2010. A gel-free quantitative proteomics approach to investigate temperature adaptation of the foodborne pathogen Cronobacter turicensis 3032. Proteomics 10: 3248-3261. https://doi.org/10.1002/pmic.200900460
- Alreshidi MM, Dunstan RH, Macdonald MM, Smith ND, Gottfries J, Roberts TK. 2015. Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J. Proteomics 121: 44-55. https://doi.org/10.1016/j.jprot.2015.03.010
- Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A. 2006. Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 88: 85-94. https://doi.org/10.1016/j.biochi.2005.06.012
- Zhang J, Zhang L, Qiu J, Nian H. 2015. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress. J. Biosci. Bioeng. 120: 359-363. https://doi.org/10.1016/j.jbiosc.2015.02.007
- Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF. 2007. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11: 343-354. https://doi.org/10.1007/s00792-006-0042-1
- Barria CM, Malecki M, Arraiano CM. 2013. Bacterial adaptation to cold. Microbiology 159: 2437-2443. https://doi.org/10.1099/mic.0.052209-0
- Zhang L, Zhang X, Liu C, Li C, Li S, Li T, et al. 2013 Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J. Microbiol. Biotechnol. 29: 127-135. https://doi.org/10.1007/s11274-012-1165-4
- Wang J, Zhao X, Tian Z, Yang Y, Yang Z. 2015. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr. Polym. 125: 16-25. https://doi.org/10.1016/j.carbpol.2015.03.003
- Zhang J, Zhao X, Jiang Y, Zhao W, Guo T, Cao Y , et al. 2017. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci. 100: 6025-6041. https://doi.org/10.3168/jds.2016-12480
- Chen MJ, Tang HY, Chiang ML. 2017. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol. 66: 20-27. https://doi.org/10.1016/j.fm.2017.03.020
- Marceau A, Zagorec M, Chaillou S, et al. 2004. Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl. Appl. Environ. Microbiol. 70: 7260-7268. https://doi.org/10.1128/AEM.70.12.7260-7268.2004
- Marceau A, Zagorec M, Chaillou S, Mera T, Champomier-Verges MC. 2017. Histidine deficiency attenuates cell viability in rat intestinal epithelial cells by apoptosis via mitochondrial dysfunction. J. Nutr. Intermed. Metab. 8: 21-28 https://doi.org/10.1016/j.jnim.2017.05.002
- Guo J, Song X, Zou L, Chen G. 2015. The small and large subunits of carbamoyl-phosphate synthase exhibit diverse contributions to pathogenicity in Xanthomonas citri subsp. citri. J Integr. Agr. 14: 1338-1347. https://doi.org/10.1016/s2095-3119(14)60965-5
- Are VN, Kumar A, Kumar S, Goyal VD, Ghosh B, Bhatnagar D, et al. 2017. Crystal structure and biochemical investigations reveal novel mode of substrate selectivity and illuminate substrate inhibition and allostericity in a subfamily of Xaa-Pro dipeptidases. Biochim. Biophys. Acta Proteins Proteom. 1865: 153-164. https://doi.org/10.1016/j.bbapap.2016.10.016
- Onyango LA, Dunstan RH, Gottfries J, von Eiff C, Roberts TK. 2012. Effect of low temperature on growth and ultrastructure of Staphylococcus spp. PLoS One. 7: e29031. https://doi.org/10.1371/journal.pone.0029031
- Craig EA, Gambill BD, Nelson RJ. 1993. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Mol. Biol. R. 57: 402-414.
- Graumann P, Marahiel MA. 1996. Some like it cold: response of microorganisms to cold shock. Arch Microbiol. 166: 293-300. https://doi.org/10.1007/s002030050386
- Juliana D, Tom R, Bowman JP. 2013. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLoS One 8: e73603. https://doi.org/10.1371/journal.pone.0073603
- Deng W, Li C, Xie J. 2013. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell Signal. 25: 1608-1613. https://doi.org/10.1016/j.cellsig.2013.04.003
- Juan L. Ramos, Manuel Martinez-Bueno, Antonio J. Molina-Henares, Wilson Teran, Kazuya Watanabe, Xiaodong Zhang, et al. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356. https://doi.org/10.1128/MMBR.69.2.326-356.2005
- Steele KH, O'Connor LH, Burpo N, Kohler K, Johnston JW. 2012. Characterization of a ferrous iron-responsive twocomponent system in nontypeable haemophilus influenzae. J. Bacteriol. 194: 6162-6173. https://doi.org/10.1128/JB.01465-12
- Iwata Y, Satou K, Tsuzuku H, Furuichi K, Senda Y, Sakai-Takemori Y, et al. 2017. Down-regulation of the twocomponent system and cell-wall biosynthesis-related genes was associated with the reversion to daptomycin susceptibility in daptomycin non-susceptible methicillinresistant Staphylococcus aureus. Eur. J. Clin. Microbiol. 36: 1839-1845. https://doi.org/10.1007/s10096-017-2999-3
- Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
- Liu S, Graham JE, Bigelow L, Morse PD 2nd, Wilkinson BJ. 2002. Identification of listeria monocytogenes genes expressed in response to growth at low temperature. Appl. Environ. Microbol. 68: 1697-1705. https://doi.org/10.1128/AEM.68.4.1697-1705.2002
Cited by
- Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress vol.104, pp.6, 2020, https://doi.org/10.1007/s00253-020-10407-3
- Stress adaptation and cross-protection of Lactobacillus plantarum KLDS 1.0628 vol.19, pp.1, 2020, https://doi.org/10.1080/19476337.2020.1859619
- iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green vol.59, pp.2, 2020, https://doi.org/10.1007/s12275-021-0441-0
- The Influence of Environmental Conditions on the Antagonistic Activity of Lactic Acid Bacteria Isolated from Fermented Meat Products vol.10, pp.10, 2020, https://doi.org/10.3390/foods10102267
- Regulated strategies of cold-adapted microorganisms in response to cold: a review vol.28, pp.48, 2020, https://doi.org/10.1007/s11356-021-16843-6
- Effects of hydrogen peroxide on Scenedesmus obliquus: Cell growth, antioxidant enzyme activity and intracellular protein fingerprinting vol.287, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.132185