References
- Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144: 1425-1431.
- Salvador Moncada, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142.
- Pan MH, Lai CS, Ho CT. 2010. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 1: 15-31. https://doi.org/10.1039/c0fo00103a
- Lim JS, Han D, Myeong JG, Oh J, Lee JS, Lim JS. 2019. Antiinflammatory and antioxidant effects of 2, 7-dihydroxy-4, 6- dimethoxy phenanthrene isolated from dioscorea batatas decne. Appl. Biol. Chem. 62: 29. https://doi.org/10.1186/s13765-019-0436-2
- Kim JH, Soh Sy, Bae H, Nam SY. 2019. Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Appl. Biol. Chem. 62: 17. https://doi.org/10.1186/s13765-019-0422-8
- Feo VD. 2004. The ritual use of Brugmansia species in traditional Andean medicine in Northern Peru. Econ. Bot. 58: S221-S229. https://doi.org/10.1663/0013-0001(2004)58[S221:TRUOBS]2.0.CO;2
- Capasso A, Feo VD, Simone F, Sorrentino L. 1997. Activitydirected isolation of spasmolytic (anti-cholinergic) alkaloids from Brugmansia arborea (L.) Lagerheim. Int. J. Pharmacogn. 35: 43-48. https://doi.org/10.1076/phbi.35.1.43.13262
- Roses OE, Lopez CM, FernAndez JG. 1987. Isolation and identification of tropane alkaloids in species of the genus Brugmansia (Solanaceae). Acta Farm. Bonaerense 6: 167-174.
- Ghani A. 1985. Cuscohygrine from some solanaceous plants. Indian J. Pharm. Sci. 47: 127-129.
- Kim HG, Ko JH, Oh HJ, Song HS, Kwon JH, Lee YG, et al. 2018. New cytotoxic benzonitrile glycosides from Brugmansia arborea flowers. Bull. Korean Chem. Soc. 39: 687-690. https://doi.org/10.1002/bkcs.11451
- Kim DO, Lee KW, Lee HJ, Lee CY. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 50: 3713-3717. https://doi.org/10.1021/jf020071c
- Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
-
Torres-Naranjo M, Suarez A, Gilardoni G, Cartuche L, Flores P, Morocho V. 2016. Chemical constituents of Muehlenbeckia tamnifolia ( Kunth) M eisn ( Poly gonaceae) a nd its in vitro
$\alpha$ -amilase and$\alpha$ -glucosidase inhibitory activities. Molecules 21: 1461. https://doi.org/10.3390/molecules21111461 - Kwon JH, Oh HJ, Lee DS, In SJ, Seo KH, Jung JW. et al. 2019. Pharmacological activity and quantitative analysis of favonoids isolated from the flowers of Begonia semperforens Link et Otto. Appl. Biol. Chem. 62: 11. https://doi.org/10.1186/s13765-019-0416-6
- Abdullah WA, Elsayed WM, Abdelsgafeek KA, Nazif NM, Nada S, Singab NB. 2016. The flavonoids and biological activity of Cleome africana growing in Egypt. Res. J. Pharm. Biol. Chem. Sci. 7: 1092-1105.
- Ouyang XL, Wei LX, Fang XM, Wang HS, Pan YM. 2013. Flavonoid constituents of Euonymus fortunei. Chem. Nat. Comp. 49: 428-431. https://doi.org/10.1007/s10600-013-0630-0
- Park CH, Ahn MJ, Hwang GS, An SE, Whang WK. 2016. Cosmeceutical bioactivities of isolated compounds from Ligularia fischeri Turcz leaves. Appl. Biol. Chem. 59: 485-494. https://doi.org/10.1007/s13765-016-0189-0
- Li Q, Wang XG, Mo TX, Yu T. 2014. Chemical constituents from radix and rhizome of Myrsine stolonifera. Chinese Traditional Herbal Drugs 45: 2904-2907.
- Kim DO, Lee CY. 2004. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44: 253-273. https://doi.org/10.1080/10408690490464960
- De Melo GO, Malvar Ddo C, Vanderlinde FA, Rocha FF, Pires PA, Costa EA, et al. 2009. Antinociceptive and antiinflammatory kaempferol glycosides from Sedum dendroideum. J. Ethnopharmacol. 124: 228-232. https://doi.org/10.1016/j.jep.2009.04.024
- Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I. 1998. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 56: 213-222. https://doi.org/10.1016/S0006-2952(98)00128-2
- Toker G, Kupeli E, Memisoglu M, Yesilada E. 2004. Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea (silver linden). J. Ethnopharmacol. 95: 393-397. https://doi.org/10.1016/j.jep.2004.08.008
-
Lee JW, Kim NH, Kim JY, Park JH, Shin SY, Kwon YS, et al. 2013. Aromadendrin inhibits lipopolysaccharide-induced nuclear translocation of NF-
${\kappa}B$ and phosphorylation of JNK in RAW 264.7 macrophage cells. Biomol. Ther. 21: 216-221. https://doi.org/10.4062/biomolther.2013.023 -
Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. 2007. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-
${\kappa}B$ activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-${\kappa}B$ activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007: 45673. https://doi.org/10.1155/2007/45673 - Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58: 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
- Aktan F. 2004. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004. 75: 639-653. https://doi.org/10.1016/j.lfs.2003.10.042
- Markworth JF, Cameron-Smith D. 2013. Arachidonic acid supplementation enhances in-vitro skeletal muscle cell growth via a COX-2-dependent pathway. Am. J. Physiol. Cell Physiol. 304: C56-57. https://doi.org/10.1152/ajpcell.00038.2012
-
Lee SB, Shin JS, Han HS, Lee HH, Park JC, Lee KT. 2018. Kaempferol 7-O-
$\beta$ -D-glucoside isolated from the leaves of Cudrania tricuspidata inhibits LPS-induced expression of proinflammatory mediators through inactivation of NF-${\kappa}B$ , AP-1, and JAK-STAT in RAW 264.7 macrophages. Chem. Biol. Interact. 284: 101-111. https://doi.org/10.1016/j.cbi.2018.02.022
Cited by
- Coreolanceolins A–E, New Flavanones from the Flowers of Coreopsis lanceolate, and Their Antioxidant and Anti-Inflammatory Effects vol.9, pp.6, 2020, https://doi.org/10.3390/antiox9060539