DOI QR코드

DOI QR Code

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner (Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University) ;
  • Gurcan, Aliye Tugce (Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University) ;
  • Yildirim-Bilmez, Zuhal (Department of Restorative Dentistry, Faculty of Dentistry, Hatay Mustafa Kemal University) ;
  • Turunc-Oguzman, Rana (Department of Prosthodontics, Faculty of Dentistry, Altinbas University) ;
  • Gumustas, Burak (Department of Restorative Dentistry, Faculty of Dentistry, Istanbul Medipol University)
  • Received : 2019.09.15
  • Accepted : 2020.02.11
  • Published : 2020.02.28

Abstract

PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Keywords

References

  1. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29:419-26. https://doi.org/10.1016/j.dental.2013.01.002
  2. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404. https://doi.org/10.1016/S0022-3913(07)60124-3
  3. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014;93:1232-4. https://doi.org/10.1177/0022034514553976
  4. Vichi A, Carrabba M, Paravina R, Ferrari M. Translucency of ceramic materials for CEREC CAD/CAM system. J Esthet Restor Dent 2014;26:224-31. https://doi.org/10.1111/jerd.12105
  5. Della Bona A, Nogueira AD, Pecho OE. Optical properties of CAD-CAM ceramic systems. J Dent 2014;42:1202-9. https://doi.org/10.1016/j.jdent.2014.07.005
  6. Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater 2013;26:34-42. https://doi.org/10.1016/j.jmbbm.2013.05.004
  7. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater 2014;30:564-9. https://doi.org/10.1016/j.dental.2014.02.019
  8. Schepke U, Meijer HJ, Vermeulen KM, Raghoebar GM, Cune MS. Clinical bonding of resin nano ceramic restorations to zirconia abutments: A case series within a randomized clinical trial. Clin Implant Dent Relat Res 2016;18:984-92. https://doi.org/10.1111/cid.12382
  9. Bonfante EA, Suzuki M, Lorenzoni FC, Sena LA, Hirata R, Bonfante G, Coelho PG. Probability of survival of implantsupported metal ceramic and CAD/CAM resin nanoceramic crowns. Dent Mater 2015;31:e168-77. https://doi.org/10.1016/j.dental.2015.05.006
  10. Roggendorf MJ, Kunzi B, Ebert J, Roggendorf HC, Frankenberger R, Reich SM. Seven-year clinical performance of CEREC-2 all-ceramic CAD/CAM restorations placed within deeply destroyed teeth. Clin Oral Investig 2012;16:1413-24. https://doi.org/10.1007/s00784-011-0642-8
  11. Frankenberger R, Taschner M, Garcia-Godoy F, Petschelt A, Kramer N. Leucite-reinforced glass ceramic inlays and onlays after 12 years. J Adhes Dent 2008;10:393-8.
  12. Wady AF, Paleari AG, Queiroz TP, Margonar R. Repair technique for fractured implant-supported metal-ceramic restorations: a clinical report. J Oral Implantol 2014;40:589-92. https://doi.org/10.1563/AAID-JOI-D-12-00085
  13. Neis CA, Albuquerque NL, Albuquerque Ide S, Gomes EA, Souza-Filho CB, Feitosa VP, Spazzin AO, Bacchi A. Surface treatments for repair of feldspathic, leucite - and lithium disilicate-reinforced glass ceramics using composite resin. Braz Dent J 2015;26:152-5. https://doi.org/10.1590/0103-6440201302447
  14. Colares RC, Neri JR, Souza AM, Pontes KM, Mendonca JS, Santiago SL. Effect of surface pretreatments on the microtensile bond strength of lithium-disilicate ceramic repaired with composite resin. Braz Dent J 2013;24:349-52. https://doi.org/10.1590/0103-6440201301960
  15. Wady AF, Paleari AG, Queiroz TP, Margonar R. Repair technique for fractured implant-supported metal-ceramic restorations: a clinical report. J Oral Implantol 2014;40:589-92. https://doi.org/10.1563/AAID-JOI-D-12-00085
  16. Wahsh MM, Ghallab OH. Influence of different surface treatments on microshear bond strength of repair resin composite to two CAD/CAM esthetic restorative materials. Tanta Dent J 2015;12:178-84. https://doi.org/10.1016/j.tdj.2015.06.001
  17. Zaghloul H, Elkassas DW, Haridy MF. Effect of incorporation of silane in the bonding agent on the repair potential of machinable esthetic blocks. Eur J Dent 2014;8:44-52. https://doi.org/10.4103/1305-7456.126240
  18. Wiegand A, Stucki L, Hoffmann R, Attin T, Stawarczyk B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin Oral Investig 2015;19:2007-13. https://doi.org/10.1007/s00784-015-1411-x
  19. Campos F, Almeida CS, Rippe MP, de Melo RM, Valandro LF, Bottino MA. Resin bonding to a hybrid ceramic: Effects of surface treatments and aging. Oper Dent 2016;41:171-8. https://doi.org/10.2341/15-057-L
  20. Bello YD, Di Domenico MB, Magro LD, Lise MW, Corazza PH. Bond strength between composite repair and polymerinfiltrated ceramic-network material: Effect of different surface treatments. J Esthet Restor Dent 2019;31:275-9. https://doi.org/10.1111/jerd.12445
  21. Barutcigil K, Barutcigil C, Kul E, Ozarslan MM, Buyukkaplan US. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont 2019;28:71-8. https://doi.org/10.1111/jopr.12574
  22. Arpa C, Ceballos L, Fuentes MV, Perdigao J. Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin. J Prosthet Dent 2019;121:523-30. https://doi.org/10.1016/j.prosdent.2018.05.013
  23. Flury S, Dulla FA, Peutzfeldt A. Repair bond strength of resin composite to restorative materials after short- and longterm storage. Dent Mater 2019;35:1205-13. https://doi.org/10.1016/j.dental.2019.05.008
  24. Elsaka SE. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent Mater J 2015;34:161-7. https://doi.org/10.4012/dmj.2014-159
  25. Tekce N, Tuncer S, Demirci M. The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives. J Adv Prosthodont 2018;10:211-7. https://doi.org/10.4047/jap.2018.10.3.211
  26. Wang T, Nikaido T, Nakabayashi N. Photocure bonding agent containing phosphoric methacrylate. Dent Mater 1991;7:59-62. https://doi.org/10.1016/0109-5641(91)90029-X
  27. Van Landuyt KL, Yoshida Y, Hirata I, Snauwaert J, De Munck J, Okazaki M, Suzuki K, Lambrechts P, Van Meerbeek B. Influence of the chemical structure of functional monomers on their adhesive performance. J Dent Res 2008;87:757-61. https://doi.org/10.1177/154405910808700804
  28. Carvalho RM, Pegoraro TA, Tay FR, Pegoraro LF, Silva NR, Pashley DH. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine. J Dent 2004;32:55-65. https://doi.org/10.1016/j.jdent.2003.08.003
  29. Pott PC, Stiesch M, Eisenburger M. Influence of 10-MDP adhesive system on shear bond strength of zirconia-composite interfaces. Mashhad Univ Med Sci 2015;4:117-26.
  30. Loomans B, Ozcan M. Intraoral repair of direct and indirect restorations: procedures and guidelines. Oper Dent 2016;41:S68-78.
  31. Ozcan M, Bernasconi M. Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J Adhes Dent 2015;17:7-26. https://doi.org/10.3290/j.jad.a33525
  32. Chen L, Shen H, Suh BI. Effect of incorporating BisGMA resin on the bonding properties of silane and zirconia primers. J Prosthet Dent 2013;110:402-7. https://doi.org/10.1016/j.prosdent.2013.04.005
  33. Bello YD, Di Domenico MB, Magro LD, Lise MW, Corazza PH. Bond strength between composite repair and polymerinfiltrated ceramic-network material: Effect of different surface treatments. J Esthet Restor Dent 2019;31:275-9. https://doi.org/10.1111/jerd.12445
  34. Yoshihara K, Nagaoka N, Sonoda A, Maruo Y, Makita Y, Okihara T, Irie M, Yoshida Y, Van Meerbeek B. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives. Dent Mater 2016;32:1218-25. https://doi.org/10.1016/j.dental.2016.07.002
  35. Lung CY, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater 2012;28:467-77. https://doi.org/10.1016/j.dental.2012.02.009
  36. de Melo RM, Valandro LF, Bottino MA. Microtensile bond strength of a repair composite to leucite-reinforced feldspathic ceramic. Braz Dent J 2007;18:314-9. https://doi.org/10.1590/S0103-64402007000400008
  37. Ozcan M, Corazza PH, Marocho SM, Barbosa SH, Bottino MA. Repair bond strength of microhybrid, nanohybrid and nanofilled resin composites: effect of substrate resin type, surface conditioning and ageing. Clin Oral Investig 2013;17:1751-8. https://doi.org/10.1007/s00784-012-0863-5
  38. Ozcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater 2003;19:725-31. https://doi.org/10.1016/S0109-5641(03)00019-8
  39. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  40. Ramakrishnaiah R, Alkheraif AA, Divakar DD, Matinlinna JP, Vallittu PK. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int J Mol Sci 2016;17(6). pii: E822.
  41. Lucena-Martin C, Gonzalez-Lopez S, Navajas-Rodriguez de Mondelo JM. The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J Prosthet Dent 2001;86:481-8. https://doi.org/10.1067/mpr.2001.116775
  42. Peumans M, Valjakova EB, De Munck J, Mishevska CB, Van Meerbeek B. Bonding effectiveness of luting composites to different CAD/CAM materials. J Adhes Dent 2016;18:289-302.
  43. Fonseca RG, Haneda IG, Almeida-Junior AA, de Oliveira Abi-Rached F, Adabo GL. Efficacy of air-abrasion technique and additional surface treatment at titanium/resin cement interface. J Adhes Dent 2012;14:453-9. https://doi.org/10.3290/j.jad.a23444
  44. Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 2008;27:99-104. https://doi.org/10.4012/dmj.27.99
  45. Ozcan M. The use of chairside silica coating for different dental applications: a clinical report. J Prosthet Dent 2002;87:469-72. https://doi.org/10.1067/mpr.2002.124365
  46. Ozcan M, Valandro LF, Amaral R, Leite F, Bottino MA. Bond strength durability of a resin composite on a reinforced ceramic using various repair systems. Dent Mater 2009;25:1477-83. https://doi.org/10.1016/j.dental.2009.06.020
  47. Blum IR, Nikolinakos N, Lynch CD, Wilson NH, Millar BJ, Jagger DC. An in vitro comparison of four intra-oral ceramic repair systems. J Dent 2012;40:906-12. https://doi.org/10.1016/j.jdent.2012.07.008
  48. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. J Adhes Dent 2014;16:531-40. https://doi.org/10.3290/j.jad.a33198
  49. Borges GA, Sophr AM, de Goes MF, Sobrinho LC, Chan DC. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent 2003;89:479-88. https://doi.org/10.1016/S0022-3913(02)52704-9

Cited by

  1. Influence of Low-Pressure Plasma on the Surface Properties of CAD-CAM Leucite-Reinforced Feldspar and Resin Matrix Ceramics vol.10, pp.24, 2020, https://doi.org/10.3390/app10248856
  2. Bonding Performance for Repairs Using Bulk Fill and Conventional Methacrylate Composites vol.2021, 2020, https://doi.org/10.1155/2021/2935507
  3. Mechanical properties and repair bond strength of polymer‐based CAD/CAM restorative materials vol.18, pp.2, 2020, https://doi.org/10.1111/ijac.13653
  4. Effect of Silane-Containing Universal Adhesives on the Bonding Strength of Lithium Disilicate vol.14, pp.14, 2020, https://doi.org/10.3390/ma14143976
  5. Alumina particle air-abrasion and aging effects: Fatigue behavior of CAD/CAM resin composite crowns and flexural strength evaluations vol.121, 2020, https://doi.org/10.1016/j.jmbbm.2021.104592