DOI QR코드

DOI QR Code

The effects of repetitive firing processes on the optical, thermal, and phase formation changes of zirconia

  • Ozdogan, Alper (Department of Prosthodontics, Faculty of Dentistry, Ataturk University) ;
  • Ozdemir, Hatice (Department of Prosthodontics, Faculty of Dentistry, Ataturk University)
  • Received : 2019.06.13
  • Accepted : 2020.02.17
  • Published : 2020.02.28

Abstract

PURPOSE. The aim of this study was to investigate the effect of different numbers of heat treatments applied to superstructure porcelain on optical, thermal, and phase formation properties of zirconia. MATERIALS AND METHODS. Forty zirconia specimens were prepared in the form of rectangular prism. Specimens were divided into four groups (n = 10) according to the number of firing at heating values of porcelain. Color differences and translucency parameter were measured, and X-ray diffraction (XRD) analysis and differential scanning calorimetry (DSC) were performed. Data were analyzed with analysis of variance (ANOVA). RESULTS. There were no statistically significant differences in ∆E, TP, L, a, and b value changes of the zirconia specimens as a result of repetitive firing processes (P>.05). CONCLUSION. Although additional firing processes up to 4 increase peak density in thermal analysis, additional firing processes up to 4 times can be applied safely as they do not result in a change in color and phase character of zircon frameworks.

Keywords

References

  1. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  2. Clarke IC, Manaka M, Green DD, Williams P, Pezzotti G, Kim YH, Ries M, Sugano N, Sedel L, Delauney C, Nissan BB, Donaldson T, Gustafson GA. Current status of zirconia used in total hip implants. J Bone Joint Surg Am 2003;85-A:73-84.
  3. Ban S. Properties of zirconia for realization of all-ceramic restoration. J Tokyo Dent Coll Soc 2007;107:670-84.
  4. Kocak EF, Ucar Y, Kurtoglu C, Johnston WM. Color and translucency of zirconia infrastructures and porcelain-layered systems. J Prosthet Dent 2019;121:510-6. https://doi.org/10.1016/j.prosdent.2018.08.001
  5. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56. https://doi.org/10.4012/dmj.28.44
  6. Prasad HA, Pasha N, Hilal M, Amarnath GS, Kundapur V, Anand M, Singh S. To evaluate effect of airborne particle abrasion using different abrasives particles and compare two commercial available zirconia on flexural strength on heat treatment. Int J Biomed Sci 2017;13:93-112.
  7. Luthardt RG, Holzhuter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 2002;81:487-91. https://doi.org/10.1177/154405910208100711
  8. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27:535-43. https://doi.org/10.1016/j.biomaterials.2005.07.034
  9. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289-98. https://doi.org/10.1016/j.dental.2007.05.005
  10. Souza RO, Valandro LF, Melo RM, Machado JP, Bottino MA, Ozcan M. Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater 2013;26:155-63. https://doi.org/10.1016/j.jmbbm.2013.04.018
  11. Ramos GF, Pereira GK, Amaral M, Valandro LF, Bottino MA. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic. Braz Oral Res 2016;30. pii: S1806-83242016000100012.
  12. Aurelio IL, Dorneles LS, May LG. Extended glaze firing on ceramics for hard machining: Crack healing, residual stresses, optical and microstructural aspects. Dent Mater 2017;33:226-40. https://doi.org/10.1016/j.dental.2016.12.002
  13. Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-5. https://doi.org/10.1067/mpr.2002.126795
  14. Barghi N, Goldberg. Porcelain shade stability after repeated firing. J Prosthet Dent 1977;37:173-5. https://doi.org/10.1016/0022-3913(77)90239-6
  15. Jorgenson MW, Goodkind RJ. Spectrophotometric study of five porcelain shades relative to the dimensions of color, porcelain thickness, and repeated firings. J Prosthet Dent 1979;42:96-105. https://doi.org/10.1016/0022-3913(79)90335-4
  16. Barghi N, Lorenzana RE. Optimum thickness of opaque and body porcelain. J Prosthet Dent 1982;48:429-31. https://doi.org/10.1016/0022-3913(82)90080-4
  17. O'Brien WJ, Kay KS, Boenke KM, Groh CL. Sources of color variation on firing porcelain. Dent Mater 1991;7:170-3. https://doi.org/10.1016/0109-5641(91)90038-Z
  18. Matsui K, Yoshida H, Ikuhara Y. Isothermal sintering effects on phase separation and grain growth in yttria-stabilized tetragonal zirconia polycrystal. J Am Ceram Soc 2009;92:467-75. https://doi.org/10.1111/j.1551-2916.2008.02861.x
  19. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:e419-24. https://doi.org/10.1016/j.dental.2014.09.003
  20. Stawarczyk B, Emslander A, Roos M, Sener B, Noack F, Keul C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent Mater J 2014;33:591-8. https://doi.org/10.4012/dmj.2014-056
  21. Nogueira AD, Della Bona A. The effect of a coupling medium on color and translucency of CAD-CAM ceramics. J Dent 2013;41:e18-23. https://doi.org/10.1016/j.jdent.2013.02.005
  22. Alghazali N, Burnside G, Moallem M, Smith P, Preston A, Jarad FD. Assessment of perceptibility and acceptability of color difference of denture teeth. J Dent 2012;40:e10-7. https://doi.org/10.1016/j.jdent.2012.04.023
  23. Shiraishi T, Watanabe I. Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications. Dent Mater 2016;32:660-7. https://doi.org/10.1016/j.dental.2016.02.004
  24. Ikeda T, Sidhu SK, Omata Y, Fujita M, Sano H. Colour and translucency of opaque-shades and body-shades of resin composites. Eur J Oral Sci 2005;113:170-3. https://doi.org/10.1111/j.1600-0722.2005.00205.x
  25. Silva LH, Costa AK, Queiroz JR, Bottino MA, Valandro LF. Ceramic primer heat-treatment effect on resin cement/Y-TZP bond strength. Oper Dent 2012;37:634-40. https://doi.org/10.2341/11-374-L
  26. Srinivasan R, Davis HB, Cavin OB, Hubbard CR. Crystallization and phase transformation process in zirconia: An in situ hightemperature x-ray diffraction study. J Am Ceram Soc 1992;75:1217-22. https://doi.org/10.1111/j.1151-2916.1992.tb05560.x
  27. Shokry TE, Shen C, Elhosary MM, Elkhodary AM. Effect of core and veneer thicknesses on the color parameters of two all-ceramic systems. J Prosthet Dent 2006;95:124-9. https://doi.org/10.1016/j.prosdent.2005.12.001
  28. Knispel G. Factors affecting the process of color matching restorative materials to natural teeth. Quintessence Int 1991;22:525-31.
  29. Turgut S, Bagis B, Turkaslan SS, Bagis YH. Effect of ultraviolet aging on translucency of resin-cemented ceramic veneers: an in vitro study. J Prosthodont 2014;23:39-44. https://doi.org/10.1111/jopr.12061
  30. Isfahani TD, Javadpour J, Khavandi A, Goodarzi M, Rezaie HR. Nanocrystalline growth activation energy of zirconia polymorphs synthesized by mechanochemical technique. J Mater Sci Technol 2014;30:387-93. https://doi.org/10.1016/j.jmst.2013.10.012
  31. Abualsaud H, Zandparsa R, Hirayama H, Sadig W, Aboushelib M, Salameh Z. Color management of the cervical region using different framework materials. J Esthet Restor Dent 2011;23:371-8. https://doi.org/10.1111/j.1708-8240.2010.00387.x
  32. Tabatabaian F. Color in zirconia-based restorations and related factors: A literature review. J Prosthodont 2018;27:201-11. https://doi.org/10.1111/jopr.12740
  33. Lawson NC, Maharishi A. Strength and translucency of zirconia after high-speed sintering. J Esthet Restor Dent 2019 Sep 13.
  34. Juntavee N, Attashu S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J Clin Exper Dent 2018;10:e794-e804.
  35. Ozturk O, Uludag B, Usumez A, Sahin V, Celik G. The effect of ceramic thickness and number of firings on the color of two all-ceramic systems. J Prosthet Dent 2008;100:99-106. https://doi.org/10.1016/S0022-3913(08)60156-0
  36. Bachhav VC, Aras MA. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology. J Adv Prosthodont 2011;3:57-62. https://doi.org/10.4047/jap.2011.3.2.57
  37. Li S, Pang L, Yao J. The effects of firing numbers on the opening total pore volume, translucency parameter and color of dental all-ceramic systems. Hua Xi Kou Qiang Yi Xue Za Zhi 2012;30:417-9, 424.
  38. Fathi A, Farzin M, Giti R, Kalantari MH. Effects of number of firings and veneer thickness on the color and translucency of 2 different zirconia-based ceramic systems. J Prosthet Dent 2019;122:565.e1-7. https://doi.org/10.1016/j.prosdent.2019.08.020
  39. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011;27:97-108. https://doi.org/10.1016/j.dental.2010.10.018
  40. Tuncel I, Turp I, Usumez A. Evaluation of translucency of monolithic zirconia and framework zirconia materials. J Adv Prosthodont 2016;8:181-6. https://doi.org/10.4047/jap.2016.8.3.181
  41. Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand 2015;1:86-92. https://doi.org/10.3109/23337931.2015.1102639
  42. Vatali A, Kontonasaki E, Kavouras P, Kantiranis N, Papadopoulou L, Paraskevopoulos KK, Koidis P. Effect of heat treatment and in vitro aging on the microstructure and mechanical properties of cold isostatic-pressed zirconia ceramics for dental restorations. Dent Mater 2014;30:e272-82. https://doi.org/10.1016/j.dental.2014.05.017
  43. Passos SP, Linke B, Major PW, Nychka JA. The effect of air-abrasion and heat treatment on the fracture behavior of Y-TZP. Dent Mater 2015;31:1011-21. https://doi.org/10.1016/j.dental.2015.05.008
  44. Song JY, Park SW, Lee K, Yun KD, Lim HP. Fracture strength and microstructure of Y-TZP zirconia after different surface treatments. J Prosthet Dent 2013;110:274-80. https://doi.org/10.1016/S0022-3913(13)60376-5
  45. Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dent Mater J 2008;27:408-14. https://doi.org/10.4012/dmj.27.408
  46. Alkurt M, Yesil Duymus Z, Gundogdu M. Effects of multiple firings on the microstructure of zirconia and veneering ceramics. Dent Mater J 2016;35:776-81. https://doi.org/10.4012/dmj.2015-429
  47. Ozturk C, Celik E. Influence of heating rate on the flexural strength of monolithic zirconia. J Adv Prosthodont 2019;11:202-8. https://doi.org/10.4047/jap.2019.11.4.202
  48. Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal 1993;40:931-9. https://doi.org/10.1007/BF02546852