References
- Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000;22:283-97. https://doi.org/10.1093/oxfordjournals.epirev.a018040
- Marshall BJ. Helicobacter pylori. Am J Gastroenterol 1994;89:S116-28.
- Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science 1999;284:1328-33. https://doi.org/10.1126/science.284.5418.1328
- Misiewsicz J. Management of Helicobacter pylori-related disorders. Eur J Gastroenterol Hepatol 2012;9:S17-20. https://doi.org/10.1097/00042737-201204001-00005
- Polk DB, Peek Jr RM. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010;10:403-14. https://doi.org/10.1038/nrc2857
- Cha B, Lim JW, Kim KH, Kim H. 15-Deoxy-delta 12, 14-prostaglandin J2, NADPH oxidase, and RANTES expression in Helicobacter pylori-infected gastric epithelial cells. J Physiol Pharmacol 2011;62:167-74.
- Jang SH, Lim JW, Morio T, Kim H. Lycopene inhibits Helicobacter pyloriinduced ATM/ATR-dependent DNA damage response in gastric epithelial AGS cells. Free Radic Biol Med 2012;52:607-15. https://doi.org/10.1016/j.freeradbiomed.2011.11.010
- Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;3:155-68. https://doi.org/10.1038/nrc1011
- Shieh SY, Ahn J, Tamai K, Taya Y, Prives C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damageinducible sites. Genes Dev 2000;14:289-300.
- Chehab NH, Malikzay A, Appel M, Halazonetis TD. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 2000;14:278-88.
- Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998;281:1677-9. https://doi.org/10.1126/science.281.5383.1677
- Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281:1674-7. https://doi.org/10.1126/science.281.5383.1674
- Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80:293-9. https://doi.org/10.1016/0092-8674(95)90412-3
- Lahiry L, Saha B, Chakraborty J, Bhattacharyya S, Chattopadhyay S, Banerjee S, Choudhuri T, Mandal D, Bhattacharyya A, Sa G, et al. Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis. Apoptosis 2008;13:771-81. https://doi.org/10.1007/s10495-008-0213-x
- Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9. https://doi.org/10.1038/387296a0
- Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299-303. https://doi.org/10.1038/387299a0
-
Bieging-Rolett KT, Johnson TM, Brady CA, Beaudry VG, Pathak N, Han S, Attardi LD.
$P19^{Arf}$ is required for the cellular response to chronic DNA damage. Oncogene 2016;35:4414-21. https://doi.org/10.1038/onc.2015.490 - Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998;92:713-23. https://doi.org/10.1016/S0092-8674(00)81400-2
- Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 1999;3:579-91. https://doi.org/10.1016/S1097-2765(00)80351-2
- Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999;1:20-6. https://doi.org/10.1038/8991
- Li Y, Wu D, Chen B, Ingram A, He L, Liu L, Zhu D, Kapoor A, Tang D. ATM activity contributes to the tumor-suppressing functions of p14ARF. Oncogene 2004;23:7355-65. https://doi.org/10.1038/sj.onc.1207957
- Pauklin S, Kristjuhan A, Maimets T, Jaks V. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress. Biochem Biophys Res Commun 2005;334:386-94. https://doi.org/10.1016/j.bbrc.2005.06.097
- Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J, Beltz GA, Newman GW, Newman MJ. Saponin adjuvant enhancement of antigenspecific immune responses to an experimental HIV-1 vaccine. J Immunol 1992;148:1519-25.
- Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 1994;17:635-9. https://doi.org/10.1248/bpb.17.635
- Kaneko H, Nakanishi K. Proof of the mysterious efficacy of ginseng: basic and clinical trials: clinical effects of medical ginseng, Korean red ginseng: specifically, its anti-stress action for prevention of disease. J Pharmacol Sci 2004;95:158-62. https://doi.org/10.1254/jphs.FMJ04001X5
- Maffei Facino R, Carini M, Aldini G, Berti F, Rossoni G. Panax ginseng administration in the rat prevents myocardial ischemia-reperfusion damage induced by hyperbaric oxygen: evidence for an antioxidant intervention. Planta Med 1999;65:614-9. https://doi.org/10.1055/s-1999-14034
- Park S, Yeo M, Jin JH, Lee KM, Kim SS, Choi SY, Hahm KB. Inhibitory activities and attenuated expressions of 5-LOX with red ginseng in Helicobacter pyloriinfected gastric epithelial cells. Dig Dis Sci 2007;52:973-82. https://doi.org/10.1007/s10620-006-9440-6
- Cho SO, Lim JW, Kim H. Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. J Ethnopharmacol 2013;150:761-4. https://doi.org/10.1016/j.jep.2013.09.013
- Bae M, Jang S, Lim JW, Kang J, Bak EJ, Cha JH, Kim H. Protective effect of Korean Red Ginseng extract against Helicobacter pylori-induced gastric inflammation in Mongolian gerbils. J Ginseng Res 2014;38:8-15. https://doi.org/10.1016/j.jgr.2013.11.005
- Cho SO, Lim JW, Kim H. Diphenyleneiodonium inhibits apoptotic cell death of gastric epithelial cells infected with H. pylori in a Korean isolate. Yonsei Med J 2015;56:1150-4. https://doi.org/10.3349/ymj.2015.56.4.1150
- Honda R, Yasuda H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999;18:22-7. https://doi.org/10.1093/emboj/18.1.22
- Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992;69:1237-45. https://doi.org/10.1016/0092-8674(92)90644-r
- Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 2001;268:2764-72. https://doi.org/10.1046/j.1432-1327.2001.02225.x
- Nakagawa K, Taya Y, Tamai K, Yamaizumi M. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA doublestrand breaks. Mol Cell Biol 1999;19:2828-34. https://doi.org/10.1128/MCB.19.4.2828
- Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999;13:152-7. https://doi.org/10.1101/gad.13.2.152
- Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ, McKinnon PJ. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res 1999;59:2464-9.
- Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001;2:731-7. https://doi.org/10.1038/35096061
- Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M, Dereli-Oz A, Kocylowski M, Pateras IS, Evangelou K, et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol 2013;15:967-77. https://doi.org/10.1038/ncb2795
- Yang Q, Ji M, Guan H, Shi B, Hou P. Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. Clin Endocrinol Metab 2013;98:E1909-17. https://doi.org/10.1210/jc.2013-2583
- Elias J. Positive effect of Mdm2 on p53 expression explains excitability of p53 in response to DNA damage. J Theor Biol 2017;418:94-104. https://doi.org/10.1016/j.jtbi.2017.01.038
Cited by
- A protocol of systematic review and meta-analysis of narrow band imaging endoscopy in detection of early gastric cancer vol.99, pp.33, 2020, https://doi.org/10.1097/md.0000000000021420
- Identification of hub genes and signaling pathways related to gastric cells infected by Helicobacter pylori vol.156, 2021, https://doi.org/10.1016/j.micpath.2021.104932
- Comparative Evaluation of Apoptosis Induction Using Needles, Bark, and Pollen Extracts and Essential Oils of Pinus eldarica in Lung Cancer Cells vol.11, pp.13, 2021, https://doi.org/10.3390/app11135763
- Inhibition of Alveolar Bone Destruction by Red Ginseng Extract in an Experimental Animal Periodontitis Model vol.50, pp.7, 2021, https://doi.org/10.3746/jkfn.2021.50.7.672