DOI QR코드

DOI QR Code

Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases

  • Irfan, Muhammad (Laboratory of Veterinary Physiology and Cell Signaling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Minki (Laboratory of Veterinary Physiology and Cell Signaling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Rhee, Man Hee (Laboratory of Veterinary Physiology and Cell Signaling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2019.04.08
  • Accepted : 2019.05.14
  • Published : 2020.01.15

Abstract

Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.

Keywords

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, et al. Heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation 2016;133(4). e38-360. https://doi.org/10.1161/CIR.0000000000000350
  2. Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 2013;127(6):749-56. https://doi.org/10.1161/CIRCULATIONAHA.112.128413
  3. Shafiq G, Tatinati S, Ang WT, Veluvolu KC. Automatic identification of systolic time intervals in seismocardiogram. Sci Rep 2016;6:37524. https://doi.org/10.1038/srep37524
  4. Gielen S, Landmesser U. The Year in Cardiology 2013: cardiovascular disease prevention. Eur Heart J 2014;35(5):307-12. https://doi.org/10.1093/eurheartj/eht551
  5. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe: epidemiological update. Eur Heart J 2013;34(39):3028-34. https://doi.org/10.1093/eurheartj/eht356
  6. Smith JN, Negrelli JM, Manek MB, Hawes EM, Viera AJ. Diagnosis and management of acute coronary syndrome: an evidence-based update. J Am Board Fam Med 2015;28(2):283-93. https://doi.org/10.3122/jabfm.2015.02.140189
  7. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2004;114(5-6):447-53. https://doi.org/10.1016/j.thromres.2004.07.020
  8. Gowert NS, Donner L, Chatterjee M, Eisele YS, Towhid ST, Munzer P, Walker B, Ogorek I, Borst O, Grandoch M, et al. Blood platelets in the progression of Alzheimer's disease. PloS One 2014;9(2). e90523. https://doi.org/10.1371/journal.pone.0090523
  9. Donner L, Gremer L, Ziehm T, Gertzen CGW, Gohlke H, Willbold D, Elvers M. Relevance of N-terminal residues for amyloid-beta binding to platelet integrin alphaIIbbeta3, integrin outside-in signaling and amyloid-beta fibril formation. Cell Signal 2018;50:121-30. https://doi.org/10.1016/j.cellsig.2018.06.015
  10. Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda, Md) 2017;32(2):162-77. https://doi.org/10.1152/physiol.00020.2016
  11. Calderwood DA. Integrin activation. J Cell Sci 2004;117(Pt 5):657-66. https://doi.org/10.1242/jcs.01014
  12. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357(24):2482-94. https://doi.org/10.1056/NEJMra071014
  13. Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev 2015;29(3):153-62. https://doi.org/10.1016/j.blre.2014.10.003
  14. Barrett NE, Holbrook L, Jones S, Kaiser WJ, Moraes LA, Rana R, Sage T, Stanley RG, Tucker KL, Wright B, et al. Future innovations in anti-platelet therapies. Br J Pharmacol 2008;154(5):918-39. https://doi.org/10.1038/bjp.2008.151
  15. Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008;451(7181):914-8. https://doi.org/10.1038/nature06797
  16. Badimon L, Vilahur G, Padro T. Nutraceuticals and atherosclerosis: human trials. Cardiovasc Ther 2010;28(4):202-15. https://doi.org/10.1111/j.1755-5922.2010.00189.x
  17. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368(14):1279-90. https://doi.org/10.1056/NEJMoa1200303
  18. Rastogi S, Pandey MM, Rawat AK. Traditional herbs: a remedy for cardiovascular disorders. Phytomedicine 2015;23(11):1082-9. https://doi.org/10.1016/j.phymed.2015.10.012
  19. Irfan M, Kwon T-H, Yun B-S, Park N-H, Rhee MH. Eisenia bicyclis (brown alga) modulates platelet function and inhibits thrombus formation via impaired P2Y12 receptor signaling pathway. Phytomedicine 2018;40:79-87. https://doi.org/10.1016/j.phymed.2018.01.003
  20. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35(4):389-98. https://doi.org/10.5142/jgr.2011.35.4.389
  21. Ernst E. Panax ginseng: an overview of the clinical evidence. J Ginseng Res 2010;34(4):259-63. https://doi.org/10.5142/jgr.2010.34.4.259
  22. Lee CH, Kim J-H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38(3):161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  23. Kim J-H. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42(3):264-9. https://doi.org/10.1016/j.jgr.2017.10.004
  24. Lu J-M, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7(3):293-302. https://doi.org/10.2174/157016109788340767
  25. Kim JH, Yi Y-S, Kim M-Y, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41(4):435-43. https://doi.org/10.1016/j.jgr.2016.08.004
  26. CHOI Kt. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 2008;29(9):1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  27. Irfan M, Jeong D, Saba E, Kwon H-W, Shin J-H, Jeon B-R, Kim S, Kim S-D, Lee DH, Nah S-Y. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 2018:1-10.
  28. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang J, Kim HJ, Park CW, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012;33(2):151-62. https://doi.org/10.1007/s10059-012-2216-z
  29. Saba E, Jeon BR, Jeong DH, Lee K, Goo YK, Kwak D, Kim S, Roh SS, Kim SD, Nah SY, et al. A novel Korean red ginseng compound gintonin inhibited inflammation by MAPK and NF-kappaB pathways and recovered the levels of mir-34a and mir-93 in RAW 264.7 cells. Evid Based Complement Alternat Med 2015;2015:624132.
  30. Park H-J, Rhee M-H, Park K-M, Nam K-Y, Park K-H. Effect of non-saponin fraction from Panax ginseng on cGMP and thromboxane A2 in human platelet aggregation. J Ethnopharmacol 1995;49(3):157-62. https://doi.org/10.1016/0378-8741(95)01317-2
  31. Choi SH, Shin TJ, Lee BH, Hwang SH, Kang J, Kim HJ, Park CW, Nah SY. An edible gintonin preparation from ginseng. J Ginseng Res 2011;35(4):471-8. https://doi.org/10.5142/jgr.2011.35.4.471
  32. Pyo MK, Choi S-H, Hwang SH, Shin T-J, Lee B-H, Lee S-M, Lim Y-H, Kim D-H, Nah S-Y. Novel glycolipoproteins from ginseng. J Ginseng Res 2011;35(1):92-103. https://doi.org/10.5142/jgr.2011.35.1.092
  33. Adam F, Kauskot A, Rosa JP, Bryckaert M. Mitogen-activated protein kinases in hemostasis and thrombosis. J Thromb Haemost : JTH 2008;6(12):2007-16. https://doi.org/10.1111/j.1538-7836.2008.03169.x
  34. Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood 2014;124(13):2013-24. https://doi.org/10.1182/blood-2014-01-453134
  35. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci 2002;115(20):3861-3. https://doi.org/10.1242/jcs.00059
  36. Canobbio I, Cipolla L, Consonni A, Momi S, Guidetti G, Oliviero B, Falasca M, Okigaki M, Balduini C, Gresele P, et al. Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca(2+)-dependent tyrosine kinase Pyk2. Blood 2013;121(4):648-57. https://doi.org/10.1182/blood-2012-06-438762
  37. Park H-J, Rhee M-H, Park K-M, Nam K-Y, Park K-H. Panaxadiol from Panax ginseng CA Meyer inhibits synthesis of thromboxane $ A_2 $ in platelet aggregation induced by thrombin. J Ginseng Res 1993;17(2):131-4.
  38. Rhee M-H, Park K-M, Park H-J, Nam K-Y, Park K-H. Inhibition of perotonin release by lipophilic fraction from Korean red ginseng. J Ginseng Res 1993;17(2):127-30.
  39. Park H-J, Rhee M, Park K, Park K, No Y. Effects of protein fractions and ginsenosides from Panax ginseng CA Meyer on substrate phosphorylation by a catalytic fragment of protein kinase. Korean Biochem J (Korea Republic) 1994;27(4):280-3.
  40. Lee W-M, Kamruzzaman S, Song Y-B, Cho J-Y, Park H-J, Rhee M-H. Inhibitory activities of red ginseng acidic polysaccharide in platelet aggregation. J Ginseng Res 2008;32(1):73-8. https://doi.org/10.5142/JGR.2008.32.1.073
  41. Park K-M, Rhee M-H, Shin H-J, Song Y-B, Hyun H-C, Park K-H, Cho H-J, Choi SA, Kang H-C, Kim K-J. Inhibitory effects of Panaxatriol from Panax ginseng CA Meyer on phosphoinositide breakdown induced by thrombin in platelets. J Ginseng Res 2008;32(2):107-13. https://doi.org/10.5142/JGR.2008.32.2.107
  42. Lee WM, Kim SD, Park MH, Cho JY, Park HJ, Seo GS, Rhee MH. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: critical roles of ERK2 and cAMP. J Pharm Pharmacol 2008;60(11):1531-6. https://doi.org/10.1211/jpp/60.11.0015
  43. Lee D-H, Cho H-J, Kim H-H, Rhee MH, Ryu J-H, Park H-J. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser157 phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37(2):176-86. https://doi.org/10.5142/jgr.2013.37.176
  44. Lee D-H, Cho H-J, Kang H-Y, Rhee MH, Park H-J. Total saponin from Korean red ginseng inhibits thromboxane A2 production associated microsomal enzyme activity in platelets. J Ginseng Res 2012;36(1):40-6. https://doi.org/10.5142/jgr.2012.36.1.40
  45. Jeon BR, Kim SJ, Hong SB, Park H-J, Cho JY, Rhee MH. The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation. J Ginseng Res 2015;39(3):279-85. https://doi.org/10.1016/j.jgr.2015.02.001
  46. Shin J-H, Kwon H-W, Cho H-J, Rhee MH, Park H-J. Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+] i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1, 4, 5-trisphosphate receptor type I in human platelets. J Ginseng Res 2015;39(4):354-64. https://doi.org/10.1016/j.jgr.2015.03.006
  47. Kwon H-W, Shin J-H, Cho H-J, Rhee MH, Park H-J. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt. J Ginseng Res 2016;40(1):76-85. https://doi.org/10.1016/j.jgr.2015.05.004
  48. Qi H, Huang Y, Yang Y, Dou G, Wan F, Zhang W, Yang H, Wang L, Wu C, Li L. Anti-platelet activity of panaxatriol saponins is mediated by suppression of intracellular calcium mobilization and ERK2/p38 activation. BMC Complement Altern Med 2016;16(1):174. https://doi.org/10.1186/s12906-016-1160-7
  49. Jeong D, Irfan M, Kim S-D, Kim S, Oh J-H, Park C-K, Kim H-K, Rhee MH. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017;41(4):548-55. https://doi.org/10.1016/j.jgr.2016.11.003
  50. Teng C-M, Kuo S-C, Ko F-N, Lee J-C, Lee L-G, Chen S-C, Huang T-F. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochimica et Biophysica Acta (BBA) - General Subjects 1989;990(3):315-20. https://doi.org/10.1016/S0304-4165(89)80051-0
  51. Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, Yue M, Liu Y, Hu X, Hu H. Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 2014;133(1):57-65. https://doi.org/10.1016/j.thromres.2013.10.032
  52. Kwon H-W. 20(S)-ginsenoside Rg3 inhibits glycoprotein IIb/IIIa activation in human platelets. J Appl Biol Chem 2018;61(3):257-65. https://doi.org/10.3839/jabc.2018.037
  53. Kwon H-W. Inhibitory effect of 20(S)-Ginsenoside Rg3 on human platelet aggregation and intracellular Ca(2+) levels via cyclic adenosine monophosphate dependent manner. Prev Nutr and Food Sci 2018;23(4):317-25. https://doi.org/10.3746/pnf.2018.23.4.317
  54. Lee JG, Lee YY, Kim SY, Pyo JS, Yun-Choi HS, Park JH. Platelet antiaggregating activity of ginsenosides isolated from processed ginseng. Pharmazie - An Int J Pharmaceut Sci 2009;64(9):602-4.
  55. Lee JG, Lee YY, Wu B, Kim SY, Lee YJ, Yun-Choi HS, Park JH. Inhibitory activity of ginsenosides isolated from processed ginseng on platelet aggregation. Pharmazie - An Int J Pharmaceut Sci 2010;65(7):520-2.
  56. Matsuda H, Namba K, Fukuda S, Tani T, Kubo M. Pharmacological study on Panax ginseng C. A. Meyer. IV. Effects of red ginseng on experimental disseminated intravascular coagulation. (3). Effect of ginsenoside-Ro on the blood coagulative and fibrinolytic system. Chem Pharm Bull 1986;34(5):2100-4. https://doi.org/10.1248/cpb.34.2100
  57. Ju HK, Lee JG, Park MK, Park S-J, Lee CH, Park JH, Kwon SW. Metabolomic investigation of the anti-platelet aggregation activity of ginsenoside Rk1 reveals attenuated 12-HETE production. J Proteome Res 2012;11(10):4939-46. https://doi.org/10.1021/pr300454f
  58. Kwon H-W, Shin J-H, Lee D-H, Park H-J. Inhibitory effects of cytosolic Ca2+ concentration by ginsenoside Ro are dependent on phosphorylation of IP3RI and dephosphorylation of ERK in human platelets. Evidence-based complementary and alternative medicine. eCAM 2015;2015:764906.
  59. Shin J-H, Kwon H-W, Cho H-J, Rhee MH, Park H-J. Vasodilator-stimulated phosphoprotein-phosphorylation by ginsenoside Ro inhibits fibrinogen binding to ${\alpha}IIb/{\beta}3$ in thrombin-induced human platelets. J Ginseng Res 2016;40(4):359-65. https://doi.org/10.1016/j.jgr.2015.11.003
  60. Kwon H-W. Inhibitory effects of ginsenoside Ro on clot retraction through suppressing PI3K/Akt signaling pathway in human platelets. Prev Nutr Food Sci 2019;24(1):1. https://doi.org/10.3746/pnf.2019.24.1.1
  61. Shin J-H, Kwon H-W, Rhee MH, Park H-J. Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release. J Ginseng Res 2019;43(2):236-41. https://doi.org/10.1016/j.jgr.2017.12.007
  62. Ruggeri ZM. Mechanisms initiating platelet thrombus formation. Thromb Haemost 1997;78(1):611-6. https://doi.org/10.1055/s-0038-1657598
  63. Jennings LK. Role of platelets in atherothrombosis. Am J Cardiol 2009;103(3 Suppl):4a-10a. https://doi.org/10.1016/j.amjcard.2008.11.017
  64. Yacoub D, Theoret JF, Villeneuve L, Abou-Saleh H, Mourad W, Allen BG, Merhi Y. Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release. J Biol Chem 2006;281(40):30024-35. https://doi.org/10.1074/jbc.M604504200
  65. Garcia A, Shankar H, Murugappan S, Kim S, Kunapuli SP. Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets. Biochem J 2007;404(2):299-308. https://doi.org/10.1042/BJ20061584
  66. Kudo I, Murakami M. Phospholipase A2 enzymes. Prostagl Other Lipid Mediat 2002;68-69:3-58. https://doi.org/10.1016/S0090-6980(02)00020-5
  67. Kwon H-W. Inhibitory effects of phytochemicals on thromboxane A2 generation via MAPK signaling pathways in platelet aggregation. Republic of Korea: Department of Smart Foods and Drugs, Graduate School, Inje University Gimhae; 2017.
  68. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. BMC Complement Altern Med 2003;31(8):1065.
  69. Park TY, Park MH, Shin WC, Rhee MH, Seo DW, Cho JY, Kim HM. Anti-metastatic potential of ginsenoside Rp1, a novel ginsenoside derivative. Biol Pharm Bull 2008;31(9):1802-5. https://doi.org/10.1248/bpb.31.1802
  70. Kang J-H, Song K-H, Woo J-K, Park MH, Rhee MH, Choi C, Oh SH. Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Foods Hum Nutr 2011;66(3):298. https://doi.org/10.1007/s11130-011-0242-4
  71. Endale M, Lee WM, Kamruzzaman SM, Kim SD, Park JY, Park MH, Park TY, Park HJ, Cho JY, Rhee MH. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br J Pharmacol 2012;167(1):109-27. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  72. Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost : JTH. 2009;7(7):1057-66. https://doi.org/10.1111/j.1538-7836.2009.03455.x
  73. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007;21(2):99-111. https://doi.org/10.1016/j.blre.2006.06.001
  74. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006;99(12):1293-304. https://doi.org/10.1161/01.RES.0000251742.71301.16
  75. Irfan M, Jeong D, Kwon H-W, Shin J-H, Park S-J, Kwak D, Kim T-H, Lee D-H, Park H-J, Rhee MH. Ginsenoside-Rp3 inhibits platelet activation and thrombus formation by regulating MAPK and cyclic nucleotide signaling. Vasc Pharmacol 2018;109:45-55. https://doi.org/10.1016/j.vph.2018.06.002
  76. Son YM, Jeong DH, Park HJ, Rhee MH. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation. J Ginseng Res 2017;41(1):96-102. https://doi.org/10.1016/j.jgr.2016.01.003
  77. Ravishankar D, Salamah M, Akimbaev A, Williams HF, Albadawi DAI, Vaiyapuri R, Greco F, Osborn HMI, Vaiyapuri S. Impact of specific functional groups in flavonoids on the modulation of platelet activation. Sci Rep 2018;8(1):9528. https://doi.org/10.1038/s41598-018-27809-z

Cited by

  1. Energy Metabolism Mechanism of Anticardiogenic Shock Effect Component Ginsenoside Rc of Shenfu Injection on H9c2 Myocardial Injury Cells Induced by Hypoxia/Reoxygenation vol.2020, 2020, https://doi.org/10.1155/2020/1828629
  2. Ulmus parvifolia Modulates Platelet Functions and Inhibits Thrombus Formation by Regulating Integrin α IIb β 3 and cAMP Signaling vol.11, 2020, https://doi.org/10.3389/fphar.2020.00698
  3. SQUAMOSA Promoter Binding Protein-Like ( SPL ) Gene Family: TRANSCRIPTOME-Wide Identification, Phylogenetic Relationship, Expression Patterns and Network Interaction Analysis in Panax ginseng C. A. vol.9, pp.3, 2020, https://doi.org/10.3390/plants9030354
  4. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions vol.44, pp.4, 2020, https://doi.org/10.1016/j.jgr.2020.03.001
  5. The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: From molecular mechanisms to clinical applications vol.159, 2020, https://doi.org/10.1016/j.phrs.2020.105031
  6. Red Ginseng Oil Attenuates Oxidative Stress and Offers Protection against Ultraviolet-Induced Photo Toxicity vol.2021, 2021, https://doi.org/10.1155/2021/5538470
  7. Antiplatelet and Antithrombotic Effects of Epimedium koreanum Nakai vol.2021, 2020, https://doi.org/10.1155/2021/7071987
  8. Derrone Inhibits Platelet Aggregation, Granule Secretion, Thromboxane A2 Generation, and Clot Retraction: An In Vitro Study vol.2021, 2020, https://doi.org/10.1155/2021/8855980
  9. In vitro and in vivo effects of carrot on human blood platelet aggregation vol.56, pp.4, 2020, https://doi.org/10.1111/ijfs.14809
  10. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking vol.86, 2021, https://doi.org/10.1016/j.phymed.2021.153558
  11. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action vol.169, 2021, https://doi.org/10.1016/j.phrs.2021.105647
  12. Antioxidant, Anti-Inflammatory and Antithrombotic Effects of Ginsenoside Compound K Enriched Extract Derived from Ginseng Sprouts vol.26, pp.13, 2021, https://doi.org/10.3390/molecules26134102
  13. Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and αIIbβ3 activation vol.45, pp.4, 2020, https://doi.org/10.1016/j.jgr.2020.11.001
  14. Ginsenoside Prolongs the Lifespan of C. elegans via Lipid Metabolism and Activating the Stress Response Signaling Pathway vol.22, pp.18, 2020, https://doi.org/10.3390/ijms22189668
  15. Effects of Nutrients on Platelet Function: A Modifiable Link between Metabolic Syndrome and Neurodegeneration? vol.11, pp.10, 2021, https://doi.org/10.3390/biom11101455
  16. Korean Red Ginseng Enhances Immunotherapeutic Effects of NK Cells via Eosinophils in Metastatic Liver Cancer Model vol.14, pp.1, 2020, https://doi.org/10.3390/nu14010134