Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Ministry of Science and ICT (MSIT) (No.2017R1A5A 1014883). The second author was supported by the Korea Ministry of Land, Infrastructure and Transport (MOLIT) as 「Innovative Talent Education Program for Smart City」.
References
- Brady, B.H. and Brown, E.T. (1993), Rock Mechanics: For Underground Mining, Springer Science & Business Media. Berlin, Germany.
- Biggs, J.M. (1964), Introduction to Structural Dynamics, McGraw-Hill, New York, U.S.A.
- Cai, J. and Zhao, J. (2000), "Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses", Int. J. Rock Mech. Min. Sci., 37(4), 661-682. https://doi.org/10.1016/S1365-1609(00)00013-7.
- Cha, M. and Cho, G.C. (2007), "Compression wave velocity of cylindrical rock specimens: Engineering modulus interpretation", Jpn. J. Appl. Phys., 46(7S), 4497. https://doi.org/10.1143/JJAP.46.4497.
- Cha, M., Cho, G.C. and Santamarina, J.C. (2009), "Long-wavelength P-wave and S-wave propagation in jointed rock masses", Geophysics, 74(5), E205-E214. https://doi.org/10.1190/1.3196240.
- Chai, S., Li, J., Zhang, Q., Li, H. and Li, N. (2016), "Stress wave propagation across a rock mass with two non-parallel joints", Rock. Mech. Rock. Eng., 49(10), 4023-4032. https://doi.org/10.1007/s00603-016-1068-z.
- Cook, N.G. (1992). "Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress", Int. J. Rock Mech. Min. Sci., 29(3), 198-223. https://doi.org/10.1016/0148-9062(92)93656-5.
- Fratta, D. and Santamarina, J. (2002), "Shear wave propagation in jointed rock: State of stress", Geotechnique, 52(7), 495-505. https://doi.org/10.1680/geot.2002.52.7.495.
- Goodman, R.E. (1989), Introduction to Rock Mechanics, Wiley, New York, U.S.A.
- Howie, J.A. and Amini, A. (2005), "Numerical simulation of seismic cone signals", Can. Geotech. J., 42(2), 574-586. https://doi.org/10.1139/t04-120.
- Itasca, C. (2013), 3DEC, Software, Version 5.0, Minneapolis, Minnesota, U.S.A.
- Ju, Y., Sudak, L. and Xie, H. (2007), "Study on stress wave propagation in fractured rocks with fractal joint surfaces", Int. J. Solids Struct., 44(13), 4256-4271. https://doi.org/10.1016/j.ijsolstr.2006.11.015.
- Kim, J.W., Chong, S.H. and Cho, G.C. (2018), "Experimental characterization of stress-and strain-dependent stiffness in grouted rock nasses", Materials. 11(4), 524. https://doi.org/10.3390/ma11040524.
- Li, H., Liu, T., Liu, Y., Li, J., Xia, X. and Liu, B. (2016), "Numerical modeling of wave transmission across rock masses with nonlinear joints", Rock. Mech. Rock. Eng., 49(3), 1115-1121. https://doi.org/10.1007/s00603-015-0766-2.
- Li, J., Li, H., Jiao, Y., Liu, Y., Xia, X. and Yu, C. (2014), "Analysis for oblique wave propagation across filled joints based on thin-layer interface model", J. Appl. Geophys., 102, 39-46. https://doi.org/10.1016/j.jappgeo.2013.11.014
- Li, J., Ma, G. and Zhao, J. (2010), "An equivalent viscoelastic model for rock mass with parallel joints", J. Geophys. Res. Solid Earth, 115(B3). https://doi.org/10.1029/2008JB006241.
- Li, J.C., Wu, W., Li, H., Zhu, J. and Zhao, J. (2013), "A thin-layer interface model for wave propagation through filled rock joints", J. Appl. Geophys., 91 31-38. https://doi.org/10.1016/j.jappgeo.2013.02.003.
- Mindlin, R.D. (1960), Waves and Vibrations in Isotropic, Elastic Plates, in Structural Mechanics. Pergamon Press, New York, U.S.A., 199-232.
- Mohd-Nordin, M.M., Song, K.I., Cho, G.C. and Mohamed, Z. (2014), "Long-wavelength elastic wave propagation across naturally fractured rock masses", Rock Mech. Rock Eng., 47(2), 561-573. https://doi.org/10.1007/s00603-013-0448-x.
- Perino, A., Zhu, J., Li, J., Barla, G. and Zhao, J. (2010), "Theoretical methods for wave propagation across jointed rock masses", Rock Mech. Rock Eng., 43(6), 799-809. https://doi.org/10.1007/s00603-010-0114-5.
- Perino, A. and Barla, G. (2015), "Resonant column apparatus tests on intact and jointed rock specimens with numerical modelling validation", Rock Mech. Rock Eng., 48(1), 197-211. https://doi.org/10.1007/s00603-014-0564-2.
- Pyrak‐Nolte, L.J., Myer, L.R. and Cook, N.G. (1990), "Transmission of seismic waves across single natural fractures", J. Geophys. Res. Solid Earth, 95(B6), 8617-8638. https://doi.org/10.1029/JB095iB06p08617.
- Robertsson, J.O., Blanch, J.O. and Symes, W.W. (1994), "Viscoelastic finite-difference modeling", Geophysics, 59(9), 1444-1456. https://doi.org/10.1190/1.1443701.
- Saenger, E.H., Gold, N. and Shapiro, S.A. (2000), "Modeling the propagation of elastic waves using a modified finite-difference grid", Wave Motion, 31(1), 77-92. https://doi.org/10.1016/S0165-2125(99)00023-2.
- Sansalone, M. and Carino, N.J. (1986), "Impact-echo: A method for flaw detection in concrete using transient stress waves", NBSIR 86-3452, US Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Center for Building Technology, Structures Division, U.S.A.
- Schoenberg, M. (1980), "Elastic wave behavior across linear slip interfaces", J. Acoust. Soc. Am., 68(5), 1516-1521. https://doi.org/10.1121/1.385077.
- Schoenberg, M. and Muir, F. (1989), "A calculus for finely layered anisotropic media", Geophysics, 54(5), 581-589. https://doi.org/10.1190/1.1442685.
- Schoenberg, M. and Sayers, C.M. (1995), "Seismic anisotropy of fractured rock", Geophysics, 60(1), 204-211. https://doi.org/10.1190/1.1443748.
- Tao, M., Chen, Z., Li, X., Zhao, H. and Yin, T. (2016), "Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations", Geomech. Eng., 10(3), 285-296. https://doi.org/10.12989/gae.2016.10.3.285.
- Villiappan, S. and Murti, V. (1984), "Finite element constraints in the analysis of wave propagation problem", UNICV Report No.48, R-218, School of Civil Engineering, University of New South Wales, Australia.
- Wang, R., Hu, Z., Zhang, D. and Wang, Q. (2017), "Propagation of the stress wave through the filled joint with linear viscoelastic deformation behavior using time-domain recursive method", Rock Mech. Rock Eng., 50(12), 3197-3207. https://doi.org/10.1007/s00603-017-1301-4.
- White, J.E. (1983), Underground Sound: Application of Seismic Waves, Elsevier Science Publishing Company Inc, Amsterdam, The Netherlands.
- Wu, N., Liang, Z., Li, Y., Qian, X. and Gong, B. (2019), "Effect of confining stress on representative elementary volume of jointed rock masses", Geomech. Eng., 18(6), 627-638. https://doi.org/10.12989/gae.2019.18.6.627.
- Zerwer, A., Cascante, G. and Hutchinson, J. (2002), "Parameter estimation in finite element simulations of Rayleigh waves", J. Geotech. Geoenviron. Eng., 128(3), 250-261. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(250).
- Zhao, X., Zhao, J., Cai, J. and Hefny, A.M. (2008), "UDEC modelling on wave propagation across fractured rock masses", Comput. Geotech., 35(1), 97-104. https://doi.org/10.1016/j.compgeo.2007.01.001
- Zhu, J., Deng, X., Zhao, X. and Zhao, J. (2013), "A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC", Rock. Mech. Rock. Eng., 46(6), 1429-1442. https://doi.org/10.1007/s00603-012-0352-9.
- Zhu, J., Zhao, X., Wu, W. and Zhao, J. (2012), "Wave propagation across rock joints filled with viscoelastic medium using modified recursive method", J. Appl. Geophys., 86, 82-87. https://doi.org/10.1016/j.jappgeo.2012.07.012.
Cited by
- Theoretical model for the shear strength of rock discontinuities with non-associated flow laws vol.24, pp.4, 2020, https://doi.org/10.12989/gae.2021.24.4.307
- Development of Equivalent Stress- and Strain- Dependent Model for Jointed Rock Mass and Its Application to Underground Structure vol.25, pp.12, 2021, https://doi.org/10.1007/s12205-021-0616-6