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Abstract. In this article, we determine sufficient conditions on the parameters of a gen-

eralized convolution operator to ensure that it belongs to the Hardy space and to the space

of bounded analytic functions. We exhibit the utility of these results by deducing several

interesting examples.

1. Introduction

Let H denote the class of analytic functions in the open unit disk D = {z :
|z| < 1}, and A be the subclass of H consisting of normalized analytic functions of
the form

f(z) = z +
∞∑

n=2

an z
n (z ∈ D).

For the analytic functions f and g, we say that f is subordinate to g and write f ≺ g,
if there exists an analytic function w in D such that w(0) = 0 and f(z) = g(w(z)).
In particular, if g is univalent in D, then we have the following equivalence:

f(z) ≺ g(z) (z ∈ D) ⇐⇒ [f(0) = g(0) and f(D) ⊂ g(D)].

Further, for functions fj ∈ A, given by fj(z) = z +
∑∞

n=2 an,j zn (j = 1, 2), the
Hadamard product (or Convolution) of f1 and f2 is defined by

(f1 ∗ f2)(z) := z +
∞∑

n=2

an,1 an,2 z
n (z ∈ D).

Let R(β) denote the class of functions f ∈ A such that ℜ(f ′(z)) > β (z ∈
D, β < 1), and let P(β) denote the class of functions f ∈ H such that f(0) = 1 and
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ℜ(f(z)) > β (z ∈ D, β < 1). For β = 0, we denote R(β) and P(β) simply by R and
P, respectively.

Let H∞ denote the space of all bounded analytic functions in D. This is Banach
algebra with respect to the norm ∥f∥∞ = supz∈D |f(z)|. For f ∈ H, we define

(1.1) Mp(r, f) =


(

1

2π

∫ 2π

0

∣∣f(reiθ)∣∣p dθ

)1/p

(0 < p < ∞),

max
|z|≤r

|f(z)| (p = ∞).

The function f ∈ H belongs to the Hardy space Hp (0 < p ≤ ∞), if Mp(r, f) is
bounded for all r ∈ [0, 1). Clearly, we have

H∞ ⊂ Hq ⊂ Hp for 0 < p < q < ∞

(see [3, p. 2]). For 1 ≤ p ≤ ∞, Hp is a Banach space with the norm defined by

(1.2) ∥f∥p = lim
r→1−

Mp(r, f) (1 ≤ p ≤ ∞)

(see [3, p. 23]). Following are two widely known results (see [8]) for the Hardy
space Hp:

ℜ(f ′(z)) > 0 =⇒ f ′ ∈ Hp for all p < 1(1.3)

=⇒ f ∈ Hq/(1−q) for all 0 < q < 1.

In [10], Ponnusamy studied the Hardy space of hypergeometric functions. Fur-
ther, Baricz [1] obtained the conditions for the generalized Bessel functions such that
it belongs to Hardy space and Yagmur and Orhan [16] studied the same problem
for the generalized Struve functions.

In [6] (see also [7]), Ibrahim studied the following generalized fractional integral
operator in the complex plane C:
(1.4)

Iα,µz f(z) =
(µ+ 1)1−α

Γ(α)

∫ z

0

(zµ+1−ξµ+1)α−1ξµf(ξ)dξ (α, µ ∈ R, α > 0, µ ̸= −1),

where the function f(z) is analytic in a simply connected region of C containing the
origin, and the multiplicity of (zµ+1− ξµ+1)α−1 is removed by requiring log(zµ+1−
ξµ+1) to be real when (zµ+1−ξµ+1) > 0. We observe that, if we take µ = 0 in (1.4),
we arrive at the Srivastva-Owa fractional integral operator [13] (see also [11]) and
when µ → −1+ in (1.4), we obtain the Hadamard fractional integral operator [5].

For α > 0 and µ > −1, we define a fractional integral operator Ωα,µ
z : A → A
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by

Ωα,µ
z f(z) =

(µ+ 1)αΓ
(

1
µ+1 + α+ 1

)
Γ
(

1
µ+1 + 1

) z−α(µ+1)Iα,µz f(z)

= z +
∞∑

n=2

Γ
(

1
µ+1 + α+ 1

)
Γ
(

n
µ+1 + 1

)
Γ
(

n
µ+1 + α+ 1

)
Γ
(

1
µ+1 + 1

) anz
n.(1.5)

Note that Ω0,0
z f(z) = f(z), Ω1,0

z f(z) = Lf(z) and Ωα,0
z f(z) = L(2, α + 2)f(z),

where L and L(a, c) denotes the Libera integral operator [9] and Carlson-Shaffer
operator [2], respectively. Also, we observe that the operator Ωα,µ

z satisfies the
following recurrence relation
(1.6)
z (Ωα,µ

z f(z))′ = (1 + α(µ+ 1))Ωα−1,µ
z f(z)− α(µ+ 1)Ωα,µ

z f(z) (α > 1, µ > −1).

Corresponding to fractional integral operator Ωα,µ
z f(z), a fractional differential op-

erator Φα,µf(z) was studied in [6, 7] to obtain its boundedness in Bergman space
and certain geometric properties were also discussed.

2. Main Results

In order to derive our main results, we recall here the following lemmas:

Lemma 2.1.([15]) Let F and G be analytic functions in D and F (0) = G(0). If
H(z) = zG′(z) is starlike function in D and zF ′(z) ≺ zG′(z), then

F (z) ≺ G(z) = G(0) +

∫ z

0

H(t)

t
dt.

Lemma 2.2.([14]) For α < 1, β < 1, we have P(α) ∗ P(β) ⊂ P(δ), where δ =
1− 2(1− α)(1− β). The value of δ is best possible.

Our first main result is given by Theorem 2.3 below.

Theorem 2.3 Let α > 1 and µ > −1. If f(z) ∈ R, then Ωα,µ
z f(z) ∈ R ∩H∞.

Proof. From the definition of operator Ωα,µ
z f(z), we have

(2.1)

ℜ{(Ωα,µ
z f(z))′} =

(µ+ 1)Γ
(

1
µ+1 + α+ 1

)
Γ(α)Γ

(
1

µ+1 + 1
) ∫ 1

0

uµ(1− uµ+1)α−1 ℜ{f ′(zu)} du.

By hypothesis f(z) ∈ R, hence it follows that Ωα,µ
z f(z) ∈ R. By first implication

of (1.3), we have (Ωα,µ
z f(z))

′ ∈ Hq for all q < 1. Further, by second implication of
(1.3), we have Ωα,µ

z f ∈ Hq/(1−q) for all 0 < q < 1, or equivalently, Ωα,µ
z f ∈ Hp for

all 0 < p < ∞.
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Since f ∈ R, then using the well known bound for Caratheodory functions in D,
we have |an| ≤ 2/n, n ≥ 2. Hence

|Ωα,µ
z f(z)| ≤ |z|+

Γ( 1
µ+1 + α+ 1)

Γ( 1
µ+1 + 1)

∞∑
n=2

Γ( n
µ+1 + 1)

Γ( n
µ+1 + α+ 1)

|an||z|n(2.2)

< 1 + 2

∞∑
n=2

θ(n),

where θ(n) is given by

(2.3) θ(n) =
Γ( 1

µ+1 + α+ 1)Γ( n
µ+1 + 1)

nΓ( n
µ+1 + α+ 1)Γ( 1

µ+1 + 1)
.

Evidently, θ(1) = 1 and θ(n) > 0 for all n ∈ N. It is well known that the digamma
function Ψ(x) = Γ′(x)/Γ(x) is increasing for all x > 0 (see [12, II, sec. 3/ eqn.
4 on p. 723]). Therefore Ψ(x + ε) > Ψ(x) for ε > 0. The auxiliary function
Γ̃(x) := Γ(x+ ε)/Γ(x) has a positive derivative as

Γ̃′(x) =
Γ′(x+ ε)Γ(x)− Γ(x+ ε)Γ′(x)

[Γ(x)]2

=
Γ(x+ ε)

Γ(x)

(
Γ′(x+ ε)

Γ(x+ ε)
− Γ′(x)

Γ(x)

)
> 0 (x > 0, ε > 0).(2.4)

Thus Γ̃(x) is an increasing function, so that

(2.5)
Γ(x+ ε)

Γ(x)
≥ Γ(y + ε)

Γ(y)
whenever x ≥ y > 0.

Hence

θ(n)

θ(n+ 1)
=

(n+ 1)Γ(1 + n
µ+1 ) Γ(1 + α+ n+1

µ+1 )

nΓ(1 + n+1
µ+1 ) Γ(1 + α+ n

µ+1 )
≥ 1,

which shows that 0 < θ(n + 1) < θ(n) ≤ θ(2) for each n ≥ 2. Hence θ(n) is a
non-increasing function of n ≥ 2.

Now, we shall show that limn→∞ |θ(n)|1/n = 1. Using the asymptotic formula
for the Gamma function [4, sec. 1.18, (4)], we have

lim
n→∞

|θ(n)|1/n = lim
n→∞

[
Γ(1 + α+ 1

µ+1 )

Γ(1 + 1
µ+1 )

]1/n

. lim
n→∞

[
Γ(1 + n

µ+1 )

nΓ(1 + α+ n
µ+1 )

]1/n

∼ lim
n→∞

[(
n

µ+ 1

)−α
]1/n

= lim
n→∞

(n1/n)−α

[
1

(µ+ 1)α

]1/n
= 1.
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This implies that the series in (2.2) converges for |z| < 1. Further, applying Raabe’s
test for convergence, we deduce that the power series for Ωα,µ

z f converges absolutely
for |z| = 1 for all α > 0 and µ > −1.

Also, using the known result [3, Theorem 3.11], (Ωα,µ
z f)

′ ∈ Hq implies continuity
of Ωα,µ

z f on the compact set D. Since the continuous function Ωα,µ
z f on the compact

set D is bounded, thus Ωα,µ
z f is a bounded analytic function in D. Therefore

Ωα,µ
z f ∈ H∞ and this completes the proof. 2

Remark 2.4. If we consider Ψ(z) = −z − 2 log(1 − z) = z + 2
∑∞

n=2

zn

n
, then

from the geometrical descriptions of image domains of functions in the class R, we
can easily verify that Ψ ∈ R and not belongs to H∞, but as per the Theorem 2.3,
function Ωα,µ

z Ψ(z) ∈ H∞ ∩ R, where

Ωα,µ
z Ψ(z) = z + 2

∞∑
n=2

Γ
(

1
µ+1 + α+ 1

)
Γ
(

n
µ+1 + 1

)
n Γ

(
n

µ+1 + α+ 1
)
Γ
(

1
µ+1 + 1

) zn (α > 1, µ > −1, z ∈ D).

Theorem 2.5 Let f ∈ A, α > 1 and µ > −1. If

(2.6)

∣∣∣∣Ωα−1,µ
z f(z)− Ωα,µ

z f(z)

z

∣∣∣∣ < 1

1 + α(µ+ 1)
(z ∈ D),

then
Ωα,µ

z f(z)

z
∈ P.

Proof. The inequality (2.6) is equivalent to

Ωα−1,µ
z f(z)− Ωα,µ

z f(z)

z
≺ z

1 + α(µ+ 1)
(z ∈ D),

which in view of (1.6), can be written as z

(
Ωα,µ

z f(z)

z

)′

≺ z(1+ z)′. Now applying

Lemma 2.1, for F (z) =
Ωα,µ

z f(z)

z
and G(z) = 1 + z, the desired result follows. 2

Theorem 2.6. Let f ∈ A, α > 1 and µ > −1. If g ∈ R(1/2) and Ωα,µ
z f satisfy the

inequality (2.6), then Ωα,µ
z f(z) ∗ g(z) ∈ R.

Proof. Let u(z) = Ωα,µ
z f(z) ∗ g(z), then u′(z) =

Ωα,µ
z f(z)

z
∗ g′(z). In view of the

hypotheses and Theorem 2.5, we have
Ωα,µ

z f(z)

z
∈ P and g′(z) ∈ P(1/2). Now

using Lemma 2.2, we obtain that u′(z) ∈ P, which is equivalent to u(z) ∈ R, hence
the desired result follows. 2
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