DOI QR코드

DOI QR Code

Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker

포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가

  • 최상현 (울산대학교 건설환경공학부) ;
  • 박병선 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 차수원 (울산대학교 건설환경공학부)
  • Received : 2020.02.13
  • Accepted : 2020.03.25
  • Published : 2020.03.30

Abstract

Crack control is essential to increase the durability of concrete significantly. Healing of crack can be controlled by rehydration of unreacted clinkers at the crack surface. In this paper, by comparing the results of isothermal calorimetry test and regression analysis, the Parrot & Killoh's cement hydration model was verified and clink er hydration model was proposed. The composition and quantification of hydration products were simulated by combining kinematic hydration model and thermodynamic model. Hydration simulation was conducted using the verified and proposed hydration model, and the simulation was performed by the substitution rate of clink er. The type and quantity of the final hydration product and healing product were predicted and, in addition, the optimal cementitious material of self-healing concrete was selected using the proposed hydration model.

본 연구에서는 자기치유 콘크리트의 배합에 따른 수화과정을 해석하였다. 시뮬레이션을 위해 열역학적 모델 GEMS를 사용하였으며, 시멘트 수화모델로 Parrot & Killoh의 경험적 모델을 미소수화열시험의 결과와의 비교분석을 통해 타당성을 검증하였고, 본 연구에서 바인더로 치환하여 사용하는 클링커의 수화모델을 제시하여 사용하였다. 클링커를 0%, 10%, 20%, 30%로 치환한 배합에 따른 시뮬레이션 결과로 클링커를 사용한 배합이 균열시점에서 자기치유물질 생성량이 대폭 증가하는 것으로 확인되었다. 그러나 치환율이 증가함에 따라 CSHQ와 Portlandite의 생성량이 감소해 콘크리트의 기본적 특성인 강도와 내구성에 영향을 주는 것으로 판단되며, 본 논문에서 고려한 자기치유 콘크리트 배합중 클링커를 10%를 치환한 SHP-10배합이 가장 효율적인 재료인 것으로 판단된다.

Keywords

References

  1. Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P. (2011). Thermodynamics and cement science, Cement and Concrete Research, 41(7), 679-695. https://doi.org/10.1016/j.cemconres.2011.03.018
  2. Elakneswaran, Y., Owaki, E., Miyahara, S., Ogino, M., Maruya, T., Nawa, T. (2016). Hydration study of slag-blended cement based on thermodynamic considerations, Construction and Building Materials, 124, 615-625. https://doi.org/10.1016/j.conbuildmat.2016.07.138
  3. Lothenbach, B., Matschei, T., Moschner, G., Glasser, F.P. (2008a). Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cement and Concrete Research, 38(1), 1-18. https://doi.org/10.1016/j.cemconres.2007.08.017
  4. Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008b). Influence of limestone on the hydration of Portland cements, Cement and Concrete Research, 38(6), 848-860. https://doi.org/10.1016/j.cemconres.2008.01.002
  5. Lothenbach, B. (2010). Thermodynamic equilibrium calculations in cementitious systems, Materials and Structures, 43(10), 1413-1433. https://doi.org/10.1617/s11527-010-9592-x
  6. Park, B.S., Hong, S.M. (2019). Self-healing characteristics of cement composites using clinker aggregates, Proceedings of Korea Concrete Institute Fall Convention, Korea Concrete Institute, 31(2), 629-630 [in Korean].
  7. Paul Scherrer Institut(PSI), Switzerland, (2018), http://gems.web.psi.ch/
  8. Yang, Y.T., Cha, S.W. (2017). Thermodynamic modelling of blast furnace slag blended cement composites, Journal of the Korean Recycled Construction Resources Institute, 5(4), 488-495 [In Korean]. https://doi.org/10.14190/JRCR.2017.5.4.488